AdvanceSearch
Volume 42 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
XIA Pengzhao, XU Ying, CAI Yanqing, ZHAO Sitan, SONG Pan. Effect of ball milling process on mechanical properties of medical Ti–Mg composites[J]. Powder Metallurgy Technology, 2024, 42(2): 192-199. doi: 10.19591/j.cnki.cn11-1974/tf.2021090013
Citation: XIA Pengzhao, XU Ying, CAI Yanqing, ZHAO Sitan, SONG Pan. Effect of ball milling process on mechanical properties of medical Ti–Mg composites[J]. Powder Metallurgy Technology, 2024, 42(2): 192-199. doi: 10.19591/j.cnki.cn11-1974/tf.2021090013

Effect of ball milling process on mechanical properties of medical Ti–Mg composites

doi: 10.19591/j.cnki.cn11-1974/tf.2021090013
More Information
  • Corresponding author: E-mail: xuyingddddd@163.com
  • Received Date: 2021-10-25
  • Publish Date: 2024-04-28
  • Ti–15Mg composites were prepared by ball milling, cold pressing, and microwave heating sintering. The effects of ball milling parameters on the properties of the Ti–15Mg mixed powders and the mechanical properties of the sintered composites were studied. The results show that, the average particle size of the mixed powders decreases significantly with the extension of the milling time at the ball milling speed of 200 r·min−1 for 8~10 h, the particle size distribution gradually concentrates in the range of 10~45 μm, and the sphericity of the powders increases. In the process of long-time ball milling, the soft Mg particles are subjected to the strong impact and ground, eventually leading to the soft Mg particles wrapped in the brittle Ti particles. After ball milling for 8 h, there are no obvious oxidations in the mixed powders. The distribution of Ti and Mg powders in the mixed powders are relatively uniform, and the mechanical properties of the composites are relatively excellent, which meets the requirements of medical materials. At low milling speed, the increase of milling speed can not lead to the significant change in the powder’s properties and the sintered composite properties. The optimal ball milling parameters are obtained as the ball milling time of 8 h and the milling speed of 200 r·min−1 with n-hexane as the process control agent.
  • loading
  • [1]
    刘剑桥, 刘佳, 唐毓金, 等. 钛合金在骨科植入领域的研究进展. 材料工程, 2021, 49(8): 11 doi: 10.11868/j.issn.1001-4381.2020.000380

    Liu J Q, Liu J, Tang Y J, et al. Research progress in titanium alloy in the field of orthopaedic implants. J Mater Eng, 2021, 49(8): 11 doi: 10.11868/j.issn.1001-4381.2020.000380
    [2]
    于振涛, 余森, 程军, 等. 新型医用钛合金材料的研发和应用现状. 金属学报, 2017, 53(10): 1238 doi: 10.11900/0412.1961.2017.00288

    Yu Z T, Yu S, Cheng J, et al. Development and application of novel biomedical titanium alloy materials. Acta Metall Sinica, 2017, 53(10): 1238 doi: 10.11900/0412.1961.2017.00288
    [3]
    刘芳, 周科朝, 刘咏. 原始粉料的球磨工艺对Ti/HA生物复合材料性能的影响. 粉末冶金技术, 2005, 23(2): 116 doi: 10.3321/j.issn:1001-3784.2005.02.009

    Liu F, Zhou C K, Liu Y. Effect of milling process on properties of Ti/HA biomedical composites. Powder Metall Technol, 2005, 23(2): 116 doi: 10.3321/j.issn:1001-3784.2005.02.009
    [4]
    夏朋昭, 许莹, 赵思坛, 等. Ti–Mg复合材料制备技术研究进展. 钛工业进展, 2021, 38(3): 41

    Xia P Z, Xu Y, Zhao S T, et al. Research progress of preparation technology of Ti–Mg composite materials. Titanium Ind Prog, 2021, 38(3): 41
    [5]
    田亚强, 赵冠璋, 刘芸, 等. 生物可降解医用镁合金体内外降解行为研究进展. 材料工程, 2021, 49(5): 24 doi: 10.11868/j.issn.1001-4381.2020.000338

    Tian Y Q, Zhao G Z, Liu Y, et al. Research progress in degradation behavior of biodegradable medical Mg-based alloys in vivo and in vitro. J Mater Eng, 2021, 49(5): 24 doi: 10.11868/j.issn.1001-4381.2020.000338
    [6]
    Ouyang S H, Huang Q L, Liu Y, et al. Powder metallurgical Ti–Mg metal-metal composites facilitate osteoconduction and osseointegration for orthopedic application. Bioact Mater, 2019, 4(1): 37
    [7]
    张金龙. 医用Ti–Mg复合材料的微波烧结制备及表面微弧氧化改性研究 [学位论文]. 南昌: 南昌航空大学, 2019

    Zhang J L. Preparation and Micro-Arc Oxidation Modification of the Microwave Sintered TiMg Composites [Dissertation]. Nanchang: Nanchang Hangkong University, 2019
    [8]
    王巧. 生物医用多孔Ti–Mg复合材料的微波烧结制备及降解行为研究[学位论文]. 南昌: 南昌航空大学, 2016

    Wang Q. Degradation Behavior of Biomedical Porous Ti–Mg Composites Prepared by Microwave Sintered [Dissertation]. Nanchang: Nanchang Hangkong University, 2016
    [9]
    姜山. 双连续钛–镁复合材料设计制备与表征[学位论文]. 哈尔滨: 哈尔滨工业大学, 2017

    Jiang S. Design, Fabrication and Characterization of Bicontinuous Titanium-Magnesium Composites [Dissertation]. Harbin: Harbin Institute of Technology, 2017
    [10]
    Jiang G F, Wang C L, Li Q Y, et al. Porous titanium with entangled structure filled with biodegradable magnesium for potential biomedical applications. Mater Sci Eng C, 2015, 47: 142 doi: 10.1016/j.msec.2014.11.014
    [11]
    Li Q Y, Jiang G F, Wang C L, et al. Mechanical degradation of porous titanium with entangled structure filled with biodegradable magnesium in Hanks’ solution. Mater Sci Eng C, 2015, 57: 349 doi: 10.1016/j.msec.2015.08.008
    [12]
    Esen Z, Dikici B, Duygulu O, et al. Titanium-magnesium based composites: Mechanical properties and invitro corrosion response in Ringer's solution. Mater Sci Eng A, 2013, 573: 119 doi: 10.1016/j.msea.2013.02.040
    [13]
    Kumar A, Pandey P M. Study of the influence of microwave sintering parameters on the mechanical behaviour of magnesium-based metal matrix composite. Proc Inst Mech Eng Part C, 2021, 235(13): 2416 doi: 10.1177/0954406220951236
    [14]
    陈奇. 高熵合金增强铝基复合材料的制备及性能研究[学位论文]. 广州: 华南理工大学, 2016

    Chen Q. Fabrication and Property of Aluminum Matrix Composites Reinforced by High Entropy Alloy [Dissertation]. Guangzhou: South China University of Technology, 2016
    [15]
    王月勤. 低模量多孔Ti–Mg系生物复合材料的制备与性能研究[学位论文]. 南京: 南京航空航天大学, 2010

    Wang Y Q. Preparation and Properties of Porous Ti–Mg Matrix Bio-Composites with Low Elastic Modulus [Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010
    [16]
    黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004

    Huang P Y. Theory of Power Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004
    [17]
    梁基谢夫 H П. 金属二元系相图手册. 郭青蔚 等译. 北京: 化学工业出版社, 2008

    Leung Kishev H Π. Handbook of Metal Binary Phase Diagrams. Transl by Guo Q W. Beijing: Chemical Industry Press, 2008
    [18]
    程铭, 刘咏, 吴宏, 等. 高能球磨工艺参数对氢化钛粉和镁粉性能的影响. 粉末冶金材料科学与工程, 2016, 21(4): 626 doi: 10.3969/j.issn.1673-0224.2016.04.017

    Cheng M, Liu Y, Wu H, et al. Effects of parameters of high-energy ball-milling on properties of TiH2 and Mg powder. Mater Sci Eng Powder Metal, 2016, 21(4): 626 doi: 10.3969/j.issn.1673-0224.2016.04.017
    [19]
    Li Y H, Chen N, Cui H T, et al. Fabrication and characterization of porous Ti–10Cu alloy for biomedical application. J Alloys Compd, 2017, 723: 967 doi: 10.1016/j.jallcom.2017.06.321
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article Views(325) PDF Downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return