AdvanceSearch
Turn off MathJax
Article Contents
XU Hongyang, LU Jinbin, PENG Xuan, MA Mingxing, MENG Wenglu, LI Hongzhe. Microstructure and phase stability analysis of laser cladding CoCrCu0.4FeNi high entropy alloy coatings[J]. Powder Metallurgy Technology.
Citation: XU Hongyang, LU Jinbin, PENG Xuan, MA Mingxing, MENG Wenglu, LI Hongzhe. Microstructure and phase stability analysis of laser cladding CoCrCu0.4FeNi high entropy alloy coatings[J]. Powder Metallurgy Technology.

Microstructure and phase stability analysis of laser cladding CoCrCu0.4FeNi high entropy alloy coatings

More Information
  • To improve the hardness and wear resistance of parts, the Co, Cr, Cu, and Ni elemental metal powders were used to prepare the CoCrCu0.4FeNi high entropy alloy coatings on Q235 steel substrate by laser cladding. The microstructure of the high entropy alloy coatings was analyzed by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD), and the microhardness of the coatings was measured. The lattice and elastic constants of each phase in the coatings were calculated by the first principle. The results show that, the coatings show the good metallurgical bond with the substrate without the macro-cracks and pores. The microstructure of the coatings is mainly composed of dendrite and interdendrite. The dendrite is one kind of face-centered cubic phase (FCC1), rich Cu and poor Cr, the interdendrite is another kind of face-centered cubic phase (FCC2), rich Cr and poor Cu. The thickness of the coatings is about 1.50~1.98 mm, and the size of the coating dendrite is about 7.9~10.4 μm. The microhardness of the coatings is about HV0.2 170~230, about 1.7 times that of the substrate, and the hardness of the coatings gradually decreases with the increase of the distance from the coating surface. In addition, the lower the laser power, the higher the scanning speed, the finer the dendrite, the stronger the effect of fine grain strengthening, and the higher the hardness of the coating. The error between the calculated lattice constant and the experimental value of face-centered cubic (FCC) phases in the coatings is 1.33%~2.60%. The formation heat of FCC phases is negative, and the elastic constants C11, C12, and C44 meet the mechanical stability constraints of the cubic high entropy alloy, showing the FCC phases are stable. The FCC phases at the dendrite and interdendrite are generally present as the characteristics of toughness according to the ratio of shear modulus to bulk modulus (G/B)<0.57 and Poisson's ratio (ν)>0.26. From the lower part to the upper part of the coatings, the calculated elastic modulus and hardness increase gradually, which is consistent with the variation law of the experimental data.
  • loading
  • [1]
    Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6(5): 299 doi: 10.1002/adem.200300567
    [2]
    常鸿, 赵莎, 刘春海. (AlCrMoNbZr)1− x y N y O x 高熵合金涂层的制备及性能研究. 功能材料, 2019, 50(4): 4174

    Chang H, Zhao S, Liu C H. Preparation and properties of (AlCrMoNbZr)1− x y N y O x high entropy alloy coating. J Funct, 2019, 50(4): 4174
    [3]
    辛蔚, 王玉江, 魏世丞, 等. 热喷涂制备高熵合金涂层的研究现状与展望. 工程科学学报, 2021, 43(2): 170

    Xin W, Wang Y J, Wei S C, et al. Research progress of the preparation of high entropy alloy coatings by spraying. Chin J Eng, 2021, 43(2): 170
    [4]
    田浩亮, 张晓敏, 金国, 等. 电火花沉积高熵合金涂层的研究现状与展望. 材料导报, 2021, 35(增刊1): 342

    Tian H L, Zhang X M, Jin G, et al. Research status and prospect of high entropy alloy coating prepared by electrospark deposition. Mater Rep, 2021, 35(Suppl 1): 342
    [5]
    Fu Y, Huang C, Du C W, et al. Evolution in microstructure, wear, corrosion, and tribocorrosion behavior of Mo-containing high-entropy alloy coatings fabricated by laser cladding. Corros Sci, 2021, 191: 109727 doi: 10.1016/j.corsci.2021.109727
    [6]
    郝文俊, 孙荣禄, 牛伟, 等. 激光熔覆CoCrFeNiS x 高熵合金涂层组织及耐蚀性能研究. 表面技术, 2021, 50(8): 343

    Hao W J, Sun R L, Niu W, et al. Study on microstructure and corrosion resistance of CoCrFeNiSi x high-entropy alloy coating by laser cladding. Surf Technol, 2021, 50(8): 343
    [7]
    Li Y Z, Shi Y. Microhardness, wear resistance, and corrosion resistance of Al x CrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding. Opt Laser Technol, 2021, 134(6): 106632
    [8]
    温立哲, 黄元盛. 激光熔覆AlCoCrCu1/2FeMoNiTi高熵合金涂层的组织与性能. 粉末冶金技术, 2016, 34(4): 268

    Wen L Z, Huang Y S. Microstructure and property of laser cladding CoCrCu1/2FeMoNiTi high-entropy alloys coating. Powder Metall Technol, 2016, 34(4): 268
    [9]
    陈岁元, 徐世海, 王力, 等. 激光熔覆FeAlCrNiSiC高熵合金涂层研究. 应用激光, 2015(1): 7 doi: 10.14128/j.cnki.al.20153501.007

    Chen S Y, Xu S H, Wang L, et al. Study on laser cladding FeAlCrNiSiC high entropy alloy coating. Appl Laser, 2015(1): 7 doi: 10.14128/j.cnki.al.20153501.007
    [10]
    汪震, 尚晓娟, 田兴强, 等. 激光熔覆工艺参数对MoFeCrTiWAlNb高熔点高熵合金涂层组织和性能的影响. 材料保护, 2021, 54(4): 94 doi: 10.16577/j.cnki.42-1215/tb.2021.04.018

    Wang Z, Shang X J, Tian X Q, et al. Effects of laser cladding process parameters on microstructure and properties of MoFeCrTiWAlNb high-melting-point and high-entropy alloy coating. Mater Prot, 2021, 54(4): 94 doi: 10.16577/j.cnki.42-1215/tb.2021.04.018
    [11]
    Zhang Y, Han T F, Xiao M, et al. Effect of process parameters on the microstructure and properties of laser-clad FeNiCoCrTi0.5 high-entropy alloy coating. Int J Miner Metall Mater, 2020, 27(5): 630 doi: 10.1007/s12613-019-1958-7
    [12]
    Tian F Y, Wang D P, Shen J, et al. An ab initio investigation of ideal tensile and shear strength of TiVNbMo high-entropy alloy. Mater Lett, 2016, 166: 271 doi: 10.1016/j.matlet.2015.12.064
    [13]
    Wu H, Huang S R, Zhu C Y, et al. Influence of Cr content on the microstructure and mechanical properties of Cr x FeNiCu high entropy alloys. Prog Nat Sci, 2020, 30: 239 doi: 10.1016/j.pnsc.2020.01.012
    [14]
    Liao M Q, Liu Y, Min L J, et al. Alloying effect on phase stability, elastic and thermodynamic properties of Nb−Ti−V−Zr high entropy alloy. Intermetallics, 2018, 101: 152 doi: 10.1016/j.intermet.2018.08.003
    [15]
    徐洪洋, 孟雯露, 卢金斌, 等. 基于第一性原理的CrCuFeNiTi高熵合金涂层的相及稳定性分析. 金属热处理, 2021, 7(46): 60 doi: 10.13251/j.issn.0254-6051.2021.07.012

    Xu H Y, Meng W L, Lu J B, et al. Phase and stability analysis of CrCuFeNiTi high entropy alloy coating based on first principles. Heat Treat Met, 2021, 7(46): 60 doi: 10.13251/j.issn.0254-6051.2021.07.012
    [16]
    Zhang L J, Fan J T, Liu D J, et al. The microstructural evolution and hardness of the equiatomic CoCrCuFeNi high-entropy alloy in the semi-solid state. J Alloys Compd, 2018, 745: 75 doi: 10.1016/j.jallcom.2018.02.170
    [17]
    Verma A, Tarata P, Abhyankar A C, et al. High temperature wear in CoCrFeNiCu x high entropy alloys: The role of Cu. Scr Mater, 2019, 161: 28 doi: 10.1016/j.scriptamat.2018.10.007
    [18]
    Segall M D, Philip J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter, 2002, 14(11): 2717 doi: 10.1088/0953-8984/14/11/301
    [19]
    Larkin J M, Mcgaughey A J H. Predicting alloy vibrational mode properties using lattice dynamics calculations, molecular dynamics simulations, and the virtual crystal approximation. J Appl Phys, 2013, 114(2): 023507 doi: 10.1063/1.4812737
    [20]
    Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865 doi: 10.1103/PhysRevLett.77.3865
    [21]
    Hamann D R, Schluter M, Chiang C, et al. Norm-conserving pseudopotentials. Phys Rev Lett, 1979, 43(20): 1494 doi: 10.1103/PhysRevLett.43.1494
    [22]
    尹保健. 工艺参数对激光熔覆NiWC25合金粉末的影响. 热加工工艺, 2021, 50(4): 106 doi: 10.14158/j.cnki.1001-3814.20183960

    Yin B J. Influence of technological parameters on laser cladding of NiWC25 alloy powder. Hot work technol, 2021, 50(4): 106 doi: 10.14158/j.cnki.1001-3814.20183960
    [23]
    Xu P, Zhu L, Xue P, et al. Multi-track alternated overlapping model suitable for variable laser cladding process parameters. Surf Coat Technol, 2021, 425: 127706 doi: 10.1016/j.surfcoat.2021.127706
    [24]
    Zhang W W, Wang C J, Sun B, et al. Insight into the phase transition, elastic and thermodynamic properties of BeS compound under high pressure and temperature from the first principle calculation. Vacuum, 2021, 186: 110017 doi: 10.1016/j.vacuum.2020.110017
    [25]
    Papadimitriou I, Utton C, Scott A, et al. Ab initio study of the intermetallics in Nb−Si binary system. Intermetallics, 2020, 54: 125
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(7)

    Article Metrics

    Article Views(213) PDF Downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return