AdvanceSearch
Turn off MathJax
Article Contents
Microstructure and mechanical properties of the hybrid material fabricated by selective laser melting of 316L stainless steel on a 45# steel substrate[J]. Powder Metallurgy Technology.
Citation: Microstructure and mechanical properties of the hybrid material fabricated by selective laser melting of 316L stainless steel on a 45# steel substrate[J]. Powder Metallurgy Technology.

Microstructure and mechanical properties of the hybrid material fabricated by selective laser melting of 316L stainless steel on a 45# steel substrate

  • ASTRACT A 316L stainless steel/45# steel hybride material was fabricated by selective laser melting (SLM) 3D printing of gas atomized 316L stainless steel powder on a 45# steel substrate, and its microstructure and mechanical properties were investigated. The results showed that with the scanning speed (ν) of 1000 mm?s-1, laser power (P) of 225 W, powder bed thickness (d) of 30μm and scanning track spacing (h) of 100 μm, the SLM 316L stainless steel had the least defects, and was almost fully dense. With these process parameters, the SLM 316L stainless steel and 45# steel substrate achieved excellent metallurgical bonding, and the Charpy impact energy of the bonding region was 64 J. When the tensile loading direction was perpendicular to the bonding interface, the fracture occurred within the SLM 316L stainless steel rather than at the bonding interface, and the yield strength (YS), ultimate tensile strength (UTS) and elongation to fracture (EL) were 335.2 MPa, 619.9 MPa and 48.4% respectively, showing that the bonding interface had a higher strength than the SLM 316L stainless steel. The width of the heat affected zone across the bonding interface was about 120 μm, and contained a high number density of martensitic aciculae formed as a result of rapid quenching after solidification, and the microhardness of the bonding zone was obviously higher than that of the SLM 316L stainless steel and the 45# steel substrates. When the tensile loading direction was parallel to the bonding interface, the YS, UTS and EL of the hybrid material were 448.8 MPa, 653.2 MPa and 28.8% respectively.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(78) PDF Downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return