AdvanceSearch
Turn off MathJax
Article Contents
ZHAO Bo, ZHANG Xiaomin, ZHAO Zhipeng, WU Qiong, GAO Xin. First-principles calculation and experimental study on the influence mechanism of diffusion activation energy of Cu atoms in current-assisted sintering[J]. Powder Metallurgy Technology.
Citation: ZHAO Bo, ZHANG Xiaomin, ZHAO Zhipeng, WU Qiong, GAO Xin. First-principles calculation and experimental study on the influence mechanism of diffusion activation energy of Cu atoms in current-assisted sintering[J]. Powder Metallurgy Technology.

First-principles calculation and experimental study on the influence mechanism of diffusion activation energy of Cu atoms in current-assisted sintering

More Information
  • The mechanism of rapid densification is one of the bases of the electro-induced effect in current-assisted sintering. This mechanism has been characterized as the effect of electric field intensity on the apparent (or diffusion) activation energy of sintering, and significant progress has been made. In this paper, the effects of applied electric field on the diffusion activation energy of crystal Cu are studied from two aspects of first-principles calculation and current-assisted sintering experiment. The results of the two studies reveal that the diffusion activation energy shows an obvious trend of regular decreasing trend under the action of electric field or current. In addition, to verify the positive correlation of the decreasing rule of two methods, current-assisted sintering experiment was conducted in which the inner diameter of the graphite die was varied to adjust the current density.
  • loading
  • [1]
    Choi J, Sung H M, Roh K B, et al. Fabrication of sintered tungsten by spark plasma sintering and investigation of thermal stability. Int J Refractory Met Hard Mater, 2017, 69: 164 doi: 10.1016/j.ijrmhm.2017.08.013
    [2]
    Terentyev D, Vilémová M, Yin C, et al. Assessment of mechanical properties of SPS-produced tungsten including effect of neutron irradiation. Int J Refractory Met Hard Mater, 2020, 89: 105207 doi: 10.1016/j.ijrmhm.2020.105207
    [3]
    Deng S H, Li J N, Li R D, et al. The effect of particle size on the densification kinetics of tungsten powder during spark plasma sintering. Int J Refractory Met Hard Mater, 2020, 93: 105358 doi: 10.1016/j.ijrmhm.2020.105358
    [4]
    Li J, Ding S Y, Zhu J S, et al. Current‐density dependence of activation energy in high‐Tc superconductor HgBa2Ca2Cu3O8+x. J Appl Phys, 1995, 77(12): 6398 doi: 10.1063/1.359113
    [5]
    Garay J E, Anselmi-Tamburini U, Munir Z A. Enhanced growth of intermetallic phases in the Ni–Ti system by current effects. Acta Mater, 2003, 51(15): 4487 doi: 10.1016/S1359-6454(03)00284-2
    [6]
    Kondo T, Kuramoto T, Kodera Y, et al. Enhanced growth of Mo2C formed in Mo-C diffusion couple by pulsed DC current. J Jap Soc Powder Powder Metall, 2008, 55(9): 643 doi: 10.2497/jjspm.55.643
    [7]
    Deng S H, Li R D, Yuan T C, et al. Direct current-enhanced densification kinetics during spark plasma sintering of tungsten powder. Scripta Mater, 2018, 143: 25 doi: 10.1016/j.scriptamat.2017.09.009
    [8]
    娄鹤子, 王海滨, 刘雪梅, 等. WC–Co硬质合金摩擦磨损行为的分子动力学模拟. 粉末冶金技术, 2022, 40(5): 8

    Lou H Z, Wang H B, Liu X M, et al. Molecular dynamics simulation on friction and wear behavior of WC–Co cemented carbides. Powder Metall Technol, 2022, 40(5): 8
    [9]
    Mukherjee S, Banwait A, Grixti S, et al. Adsorption and diffusion of lithium and sodium on defective rhenium disulfide: A first principles study. ACS Appl Mater Interfaces, 2018, 10(6): 5373 doi: 10.1021/acsami.7b13604
    [10]
    Yuan Z H, Kong X G, Ma S G, et al. Adsorption and diffusion mechanism of hydrogen atom on the Li2O (111) and (110) surfaces from first principles calculations. J Nuclear Mater, 2018, 513: 232
    [11]
    Lu H J, Wu H, Zou N, et al. First-principles investigation on diffusion mechanism of alloying elements in dilute Zr alloys. Acta Mater, 2018, 154: 161 doi: 10.1016/j.actamat.2018.05.015
    [12]
    Lu C, Yang J, Zhao Y, et al. Influence of applied electric field on atom diffusion behavior and mechanism for W/NiFe interface in diffusion bonding of Steel/NiFe interlayer/W by spark plasma sintering. Appl Surface Sci, 2021, 541: 148516 doi: 10.1016/j.apsusc.2020.148516
    [13]
    Zhang L Y, Peng C T, Shi J, et al. Surface alloying of chromium/tungsten/stannum on pure nickel and theoretical analysis of strengthening mechanism. Appl Surface Sci, 2020, 532: 147477 doi: 10.1016/j.apsusc.2020.147477
    [14]
    Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140(4A): A1133 doi: 10.1103/PhysRev.140.A1133
    [15]
    Peng H W, Perdew J P. Rehabilitation of the Perdew-Burke-Ernzerhof generalized gradient approximation for layered materials. Phys Rev B, 2017, 95(8): 081105 doi: 10.1103/PhysRevB.95.081105
    [16]
    You J S, Fang S, Xu S Y, et al. Berry curvature dipole current in transition metal dichalcogenides family. Phys rev, 2018, 98(12): 121109 doi: 10.1103/PhysRevB.98.121109
    [17]
    Hwang J, Noh S H, Han B. Design of active bifunctional electrocatalysts using single atom doped transition metal dichalcogenides. Appl Surface Sci, 2019, 471(31): 545
    [18]
    Zhang X, Grabowski B, Körmann F, et al. Accurate electronic free energies of the 3 d, 4 d, and 5 d transition metals at high temperatures. Phys Rev B, 2017, 95(16): 165126 doi: 10.1103/PhysRevB.95.165126
    [19]
    Kittel C, Hellwarth R W. Introduction to solid state physics. Phys Today, 1957, 10(6): 43 doi: 10.1063/1.3060399
    [20]
    Wang Y, Curtarolo S, Jiang C, et al. Ab initio lattice stability in comparison with CALPHAD lattice stability. Calphad, 2004, 28(1): 79 doi: 10.1016/j.calphad.2004.05.002
    [21]
    Naghavi S S, Hegde V I, Wolverton C. Diffusion coefficients of transition metals in fcc cobalt. Acta Mater, 2017, 132: 467 doi: 10.1016/j.actamat.2017.04.060
    [22]
    Esfandiarpour A, Nasrabadi M N. Vacancy formation energy in CuNiCo equimolar alloy and CuNiCoFe high entropy alloy: ab initio based study. Calphad, 2019, 66: 101634 doi: 10.1016/j.calphad.2019.101634
    [23]
    王顺花. Cu中空位的计算机模拟. 兰州铁道学院学报, 1997, 16(4): 43

    Wang S H. Computer simulation of vacancies in Cu. J Lanzhou Railway Inst, 1997, 16(4): 43
    [24]
    Makov G, Shah R, Payne M C. Periodic boundary conditions in ab initio calculations. II. Brillouin-zone sampling for aperiodic systems. Phys Rev B Condens Matter, 1996, 53(23): 15513
    [25]
    Yu X X, Thompson G B, Weinberger C R. Influence of carbon vacancy formation on the elastic constants and hardening mechanisms in transition metal carbides. J Europ Ceram Soc, 2015, 35(1): 95 doi: 10.1016/j.jeurceramsoc.2014.08.021
    [26]
    Wang J, Raj R. Activation energy for the sintering of two‐phase alumina/zirconia ceramics. J Am Ceram Soci, 1991, 74(8): 1959 doi: 10.1111/j.1151-2916.1991.tb07815.x
    [27]
    张剑平, 左红艳, 罗军明, 等. 微波场中铜粉烧结颈形成和晶粒长大动力学. 材料热处理学报, 2018, 39(6): 118 doi: 10.13289/j.issn.1009-6264.2018-0018

    Zhang J P, Zuo H Y, Luo J M, et al. Neck formation and grain growth kinetics of copper powder during microwave sintering. Trans Mater Heat Treat, 2018, 39(6): 118 doi: 10.13289/j.issn.1009-6264.2018-0018
    [28]
    Demuynck M, Erauw J P, Van der Biest O, et al. Densification of alumina by SPS and HP: A comparative study. J Europ Ceram Soc, 2012, 32(9): 1957 doi: 10.1016/j.jeurceramsoc.2011.10.031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article Views(102) PDF Downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return