AdvanceSearch
Volume 42 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
GAO Jiaojiao, PING Ping, HU Shiheng, SONG Jinpeng. Effect of sintering temperature on microstructure and mechanical properties of Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics[J]. Powder Metallurgy Technology, 2024, 42(2): 115-121. doi: 10.19591/j.cnki.cn11-1974/tf.2023040006
Citation: GAO Jiaojiao, PING Ping, HU Shiheng, SONG Jinpeng. Effect of sintering temperature on microstructure and mechanical properties of Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics[J]. Powder Metallurgy Technology, 2024, 42(2): 115-121. doi: 10.19591/j.cnki.cn11-1974/tf.2023040006

Effect of sintering temperature on microstructure and mechanical properties of Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics

doi: 10.19591/j.cnki.cn11-1974/tf.2023040006
More Information
  • Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics were prepared by alternately making layer method and vacuum hot pressing sintering technology, using Ti(C,N) as the matrix phase, HfN and WC as the reinforced phases for the different layers, and metal Ni and Mo as the binder phases. The effects of sintering temperature on the microstructure and mechanical properties of the laminated ceramics were investigated. The results show that with the increase of sintering temperature, the grains grow up gradually. When the sintering temperature is 1350 ℃ and 1400 ℃, the grains are small but unevenly distributed with many micro-defects. At the sintering temperature of 1450 ℃ and 1500 ℃, the grains are uniform (~1 μm) and there are fewer micro-defects. However, when the sintering temperature reaches 1550 ℃, a large number of coarse grains (~2 μm) appear. Moreover, with the increase of the sintering temperature, the flexural strength, Vickers hardness, and fracture toughness of the laminated ceramics increase first and then decrease. The laminated ceramic sintered at 1450 ℃ shows the better comprehensive mechanical properties, the flexural strength, Vickers hardness, and fracture toughness are (1263.6±17.1) MPa, (18.5±0.3) GPa, and (8.2±0.1) MPa·m1/2, respectively. In addition, the Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics exhibit the co-existence model of intergranular fracture and transgranular fracture.
  • loading
  • [1]
    Duan P Q, Chen W L, Liu A J, et al. Study on mechanical properties and crack resistance of composite Ti(C, N) based cermets. J Phys Conf Ser, 2021, 2021: 012001 doi: 10.1088/1742-6596/2021/1/012001
    [2]
    刘嘉威, 古思勇, 陈莹, 等 水解沉淀-碳热还原氮化法制备碳氮化钛粉末. 粉末冶金技术, 2021, 39(1): 89

    Liu J W, Gu S Y, Chen Y, et al. Synthesis of Ti(C, N) powders by hydrolysis precipitation-carbothemal reduction and nitridation method. Powder Metall Technol, 2021, 39(1): 89
    [3]
    Pang J, Liu Y, Ye J W, et al. Microwave sintering of TiCN-based cermets prepared from electroless Co-coated (Ti, W, Mo, V)CN powders. Rare Met, 2022, 41: 4209 doi: 10.1007/s12598-016-0866-5
    [4]
    李朝, 李楠, 柳学全, 等. WC质量分数对Ti(C0.7N0.3)基金属陶瓷组织和性能的影响. 粉末冶金技术, 2018, 36(2): 100

    Li C, Li N, Liu X Q, et al. Effect of WC mass fraction on the microstructure and properties of Ti(C0.7N0.3)-based cermets. Powder Metall Technol, 2018, 36(2): 100
    [5]
    宋金鹏, 于成功, 高姣姣, 等. WC含量对TiCN-HfN金属陶瓷刀具材料微观组织和力学性能的影响. 粉末冶金技术, 2020, 38(4): 243

    Song J P, Yu C G, Gao J J, et al. Effect of WC content on the microstructure and mechanical properties of TiCN-HfN cermet tool materials. Powder Metall Technol, 2020, 38(4): 243
    [6]
    Wang S W, Zheng Y, Zhang G T, et al. Effect of NbC addition on the microstructure, mechanical properties and thermal shock resistance of Ti(C, N)-based cermets. Mater Res Express, 2019, 6(5): 056557 doi: 10.1088/2053-1591/ab07e9
    [7]
    Liu C, Lin N, He Y H. Influence of Mo2C and TaC additions on the microstructure and mechanical properties of Ti(C, N)-based cermets. Ceram Int, 2016, 42(2B): 3569
    [8]
    Zhang G T, Zheng Y, Zhang J J, et al. Effect of VC/Cr3C2 additions on the microstructure, interface structure and mechanical properties of Ti(C, N)-based cermets prepared by in situ carbothermal reduction of nano TiO2. Ceram Int, 2020, 46(7): 9698 doi: 10.1016/j.ceramint.2019.12.237
    [9]
    Shankar E, Balasivanandha P S, Padmanabhan K A. Effect of nano-TiB2 addition on the microstructure, mechanical properties and machining performance of TiCN cermet. J Am Ceram Soc, 2018, 54: 565 doi: 10.1007/s41779-018-0185-4
    [10]
    刘懿漫, 邓小龙, 吴洁婷, 等. 烧结温度对Ti(C, N)刀具材料显微组织与性能的影响. 金属材料与冶金工程, 2022, 50(1): 12

    Liu Y M, Deng X L, Wu J T, et al. Effect of sintering temperature on microstructure and properties of Ti(C, N) tool materials. Met Mater Metall Eng, 2022, 50(1): 12
    [11]
    鲍贤勇, 曾美琴, 鲁忠臣, 等. 烧结温度对Ti(C, N)基金属陶瓷组织及力学性能的影响. 材料热处理学报, 2017, 38(5): 61

    Bao X Y, Zeng M Q, Lu Z C, et al. Influence of sintering temperature on microstructure and mechanical properties of Ti(C, N)-based cermets. Trans Mater Heat Treat, 2017, 38(5): 61
    [12]
    Yun H, Zou B, Wang J. Effects of sintering temperature and nano Ti(C, N) on the microstructure and mechanical properties of Ti(C, N) cermets cutting tool materials with low Ni−Co. Mater Sci Eng A, 2017, 705: 98 doi: 10.1016/j.msea.2017.08.033
    [13]
    Clegg W J, Kendall K, Alford N M, et al. A simple way to make tough ceramics. Nature, 1990, 347: 455 doi: 10.1038/347455a0
    [14]
    Gao J J, Song J P, Wang Y, et al. Microstructures and mechanical properties of functionally graded TiCN−TaC ceramics prepared by a novel layer processing strategy. Ceram Int, 2022, 48(12): 16990 doi: 10.1016/j.ceramint.2022.02.254
    [15]
    Chen B S, Xiao G C, Yi M D, et al. Structural design and toughening mechanism of laminated graphene ceramic tool materials. Ceram Int, 2021, 47(22): 32264 doi: 10.1016/j.ceramint.2021.08.121
    [16]
    王卓, 高姣姣, 王瑶, 等. 层厚对TiC-HfN/TiC-HfC层状陶瓷微观组织及力学性能的影响. 热加工工艺, 2024(4): 58

    Wang Z, Gao J J, Wang Y, et al. Effect of layer thickness on microstructure and mechanical properties of TiC-HfN/TiC-HfC laminated ceramics. Hot Working Technol, 2024(4): 58
    [17]
    Song Y J, Yi M D, Zhang G Q, et al. Design and synthesis of a novel ceramic coating-like tool material. Ceram Int, 2021, 47(3): 4206 doi: 10.1016/j.ceramint.2020.09.299
    [18]
    高姣姣. 芯-壳与颗粒弥散共存型TiCN基陶瓷刀具及其切削性能研究[学位论文]. 太原: 太原理工大学, 2020

    Gao J J. Study on TiCN-Based Ceramic Tool with A Core-Rim and Particle Dispersion Microstructure and Tool Cutting Performance [Dissertation]. Taiyuan: Taiyuan University of Technology, 2020
    [19]
    王爱军. Ti-Al-(Zr, Hf)-N耐磨涂层的热力学及力学性质的第一原理计算[学位论文]. 长沙: 中南大学, 2012

    Wang A J. First-Principles Calculations on the Thermodynamic and Mechanical Properties of Ti-Al-(Zr, Hf)-N Wear-Resistant Coating Systems [Dissertation]. Changsha: Central South University, 2012
    [20]
    中国国家标准化管理委员会. GB/T6569-2006精细陶瓷弯曲强度试验方法. 北京: 中国标准出版社, 2006

    China State Bureau of Technological Supervision. GB/T6569-2006 Chinese National Standards-Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)-Test Method For Flexural Strength of Monolithic Ceramics at Room Temperature. Beijing: Standards Press of China, 2006
    [21]
    中国国家标准化管理委员会. 精细陶瓷室温硬度试验方法 GB/T16534-2009. 北京: 中国标准出版社, 2009

    China State Bureau of Technological Supervision. GB/T16534-2009 Chinese National Standards-Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)-Test Method for Hardness of Monolithic Ceramics at Room Temperature. Beijing: Standards Press of China, 2009
    [22]
    Gao J J, Jiang L K, Song J P, et al. Effects of TiC Content on the microstructure and mechanical property of WC−TiC−TaC cemented carbides. J Inorg Mater, 2017, 32(8): 891 doi: 10.15541/jim20160633
    [23]
    Zhao L B, Lin N, Han X Q, et al. Influence of microstructure evolution on mechanical properties, wear resistance and corrosion resistance of Ti(C, N)-based cermet tools with various WC additions. Met Mater Int, 2021, 27: 2773 doi: 10.1007/s12540-020-00614-y
    [24]
    Song J P, Cao L, Gao J J, et al. Effects of HfN content and metallic additives on the microstructure and mechanical properties of TiC0.7N0.3-based ceramic tool materials. J Alloys Compd, 2018, 753: 85
    [25]
    宋金鹏. 硼化钛基复相陶瓷刀具及其失效机理研究[学位论文]. 济南: 山东大学, 2012

    Song J P. Study on Titanium Diboride Matrix Composite Ceramic Tool Materials and Tool Failure Mechanisms [Dissertation]. Jinan: Shandong University, 2012
    [26]
    李金平, 孟松鹤, 韩杰才, 等. HfC1− xN x固溶体的价电子结构与性能. 稀有金属材料与工程, 2007(4): 569 doi: 10.3321/j.issn:1002-185X.2007.04.002

    Li J P, Meng S H, Han J C, et al. Valence electron structure and properties of HfC1− xN x solid solutions. Rare Met Mater Eng, 2007(4): 569 doi: 10.3321/j.issn:1002-185X.2007.04.002
    [27]
    张广森, 季文彬, 戴士杰, 等. 微波烧结Ti(C, N)-WC-Al2O3/Ti(C, N)-WC叠层陶瓷的微观结构和力学性能. 硅酸盐学报, 2022, 50(12): 3212

    Zhang G S, Ji W B, Dai S J, et al. Microstructure and mechanical properties of microwave sintered Ti(C, N)-WC-Al2O3/Ti(C, N)-WC laminated ceramics. J Chin Ceram Soc, 2022, 50(12): 3212
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article Views(62) PDF Downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return