AdvanceSearch
Turn off MathJax
Article Contents
WU Mingjie, ZHANG Xinzhe, ZHAO Jianguo, ZHAO Yuanchao, ZHANG Huailong, GUO Yajie. Effects of induced Cu content on the microstructure and thermal properties of Mo–Cu composites[J]. Powder Metallurgy Technology.
Citation: WU Mingjie, ZHANG Xinzhe, ZHAO Jianguo, ZHAO Yuanchao, ZHANG Huailong, GUO Yajie. Effects of induced Cu content on the microstructure and thermal properties of Mo–Cu composites[J]. Powder Metallurgy Technology.

Effects of induced Cu content on the microstructure and thermal properties of Mo–Cu composites

More Information
  • Mo–Cu composites were fabricated by induced infiltration method. Mo–Cu composites with different Cu contents were prepared by adjusting the induced Cu mass fraction (0~30%). The effects of induced Cu content on the microstructure and properties of the composites were studied. The results show that the content of the induced Cu significantly influences the microstructure of the Mo–Cu composites. When the mass fraction of the induced Cu gradually increases from 0% to 20%, the porosity of the composite is greatly reduced, the distribution of Mo and Cu phases is more uniform, and the single-phase segregation in the microstructure is reduced. However, when the mass fraction of the induced Cu increases to 30%, the microstructure uniformity of the composites becomes worse and the number of pores increases significantly. The electrical conductivity and thermal conductivity of the Mo–Cu composites increase with the increase of the final Cu content in the composites. When the final Cu mass fraction is 40.46%, the relative density of the composite reaches to the peak of 98.1%. Correspondingly, the electrical conductivity and thermal conductivity of the composite are also the highest values, which are 52.69 %IACS and 203.94 W·m−1·K−1, respectively. Unexpectedly, the thermal expansion coefficient of the composites also increases with the increase of the final Cu content. The combination of regulating the induced Cu and exploring suitable infiltration processes is expected to obtain the Mo–Cu composites with improved comprehensive properties.
  • loading
  • [1]
    宋鹏, 李达, 韩蕊蕊, 等. Mo–Cu芯材表面状态对多层Cu/MoCu/Cu复合材料界面结合的影响. 粉末冶金技术, 2023, 41(3): 249

    Song P, Li D, Han R R, et al. Effects of surface state for Mo–Cu interlayer materials on interface bonding of multi-layer Cu/MoCu/Cu composites. Powder Metall Technol, 2023, 41(3): 249
    [2]
    张晓辉, 王强. 电子封装用金属基复合材料的研究现状. 微纳电子技术, 2018, 55(1): 18

    Zhang X H, Wang Q. Research state of metal-matrix composites for electronic packaging. Micronanoelectr Technol, 2018, 55(1): 18
    [3]
    赵虎, 杨秦莉, 庄飞, 等. Mo–Cu合金熔渗工艺影响因素研究. 中国钼业, 2019, 43(2): 52

    Zhao H, Yang Q L, Zhuang F, et al. Effecting Factors of Mo–Cu Alloy Infiltration Processing. China Molybd Ind, 2019, 43(2): 52
    [4]
    孙翱魁, 王德志, 李翼. 低温机械化学法制备Mo–Cu纳米复合粉末. 稀有金属材料与工程, 2012, 41(4): 722

    Sun A K, Wang D Z, Li Y. Mechanochemical synthesis of Mo–Cu nanocomposites powders at low temperature. Rare Met Mater Eng, 2012, 41(4): 722
    [5]
    Wan L, Cheng J G, Song P, et al. Synthesis and characterization of W–Cu nanopowders by a wet-chemical method. Int J Refract Met Hard Mater, 2011, 29(4): 429 doi: 10.1016/j.ijrmhm.2011.01.006
    [6]
    才剑楠, 王敬泽, 张伟. 团聚对熔渗Mo–Cu合金显微组织的影响. 热加工工艺, 2017, 46(24): 55

    Cai J N, Wang J Z, Zhang W. Effects of agglomeration on microstructure of infiltrating Mo–Cu alloy. Hot Work Technol, 2017, 46(24): 55
    [7]
    吴明明, 李来平, 高选乔, 等. 粉末冶金技术制备钼基复合材料研究进展. 粉末冶金技术, 2021, 39(5): 462

    Wu M M, Li L P, Gao X Q. Research progress of molybdenum-based composites prepared by powder metallurgy technology. Powder Metall Technol, 2021, 39(5): 462
    [8]
    张强, 蔡永丰, 李晓静, 等. 钼合金粉末冶金研究进展. 粉末冶金技术, 2023, 41(1): 44

    Zhang Q, Cai Y F, Li X J, et al. Research progress of molybdenum alloys prepared by powder metallurgy. Powder Metall Technol, 2023, 41(1): 44
    [9]
    张兵, 刘鹏茹, 张志娟, 等. W80–Cu20复合材料热变形行为及加工图研究. 稀有金属材料与工程, 2022, 51(1): 203

    Zhang B, Liu P R, Zhang Z J, et al. Thermal deformation behavior and processing map of W80–Cu20 composite by hot compressing. Rare Met Mater Eng, 2022, 51(1): 203
    [10]
    Srivastav A K, Chawake N, Yadav D, et al. Localized pore evolution assisted densification during spark plasma sintering of nanocrystalline W–5wt.%Mo alloy. Scripta Mater, 2019, 159: 41 doi: 10.1016/j.scriptamat.2018.09.013
    [11]
    Wei C L, Cheng J G, Zhang M, et al. Fabrication of diamond/W–Cu functionally graded material by microwave sintering. Nuclear Eng Technol, 2022, 54(3): 975 doi: 10.1016/j.net.2021.08.035
    [12]
    韩胜利, 宋月清, 崔舜, 等. Mo–Cu复合材料的烧结机制研究. 稀有金属, 2009, 33(1): 53

    Han S L, Song Y Q, Cui S, et al. Sintering mechanism of Mo–Cu composites. Chin J Rare Met, 2009, 33(1): 53
    [13]
    Liu B, Bai P K, Cheng J. Microstructure evolution of Mo-based composites during selective laser sintering and thermal processing. J Comput Theoret Nanosci, 2008, 5(8): 1565 doi: 10.1166/jctn.2008.825
    [14]
    刘靖忠, 窦明见, 向天翔, 等. 液相烧结法制备金刚石–WC–Co硬质合金复合材料性能影响因素的研究. 硬质合金, 2023, 40(1): 59

    Liu J Z, Dou M J, Xiang T X, et al. Study on the lnfluencing factors of properties of diamond–WC–Co cemented carbide composites prepared by liquid phase sintering. Cement Carb, 2023, 40(1): 59
    [15]
    王瑞虎, 杨军, 邹德宁, 等. 金属材料微波烧结技术的研究进展. 材料导报, 2021, 35(23): 23153

    Wang R H, Yang J, Zou D N, et al. Recent progress on microwave sintering of metal materials. Mater Rep, 2021, 35(23): 23153
    [16]
    王新刚, 张怀龙, 李文静, 等. 制备工艺对WCu30合金的显微组织及抗电弧烧蚀性能的影响. 稀有金属材料与工程, 2015, 44(1): 140

    Wang X G, Zhang H L, Li W J, et al. Effect of preparation process on microstructure and arc-erosion resistance of WCu30 alloy. Rare Met Mater Eng, 2015, 44(1): 140
    [17]
    韩蕊蕊, 李达, 梁立红, 等. 粉末对高铜含量钼铜合金均匀性的影响. 粉末冶金工业, 2022, 32(4): 117

    Han R R, Li D, Liang L H, et al. Effect of powder on uniformity of molybdenum copper alloy with high copper content. Powder Metall Ind, 2022, 32(4): 117
    [18]
    张信哲. 诱导熔渗法制备Mo–Cu40复合材料及其轧制性能研究[学位论文]. 西安: 长安大学, 2022

    Zhang X Z. Study on Rolling Properties of MoCu40 Composites Prepared by Induced Infiltration. [Dissertation]. Xi'an: Chang'an University, 2022
    [19]
    郭世柏, 易正翼, 张国辉, 等. Cu含量对Mo–Cu组织和性能的影响. 兵器材料科学与工程, 2020, 43(6): 17

    Guo S B, Yi Z Y, Zhang G H, et al. Effect of Cu content on microstructure and mechanical properties of Mo–Cu. Ordn Mater Sci Eng, 2020, 43(6): 17
    [20]
    Chen H P, Cheng J G, Zhang M L, et al. Effect of rare earth oxide addition on the microstructure and properties of ultrafine grain W–20Cu Composites. Rare Met Mater Eng, 2018, 47(9): 2626 doi: 10.1016/S1875-5372(18)30199-1
    [21]
    王敬飞, 卜春阳, 何凯, 等. 超细钼铜复合粉体及细晶钼铜合金的制备. 粉末冶金技术, 2021, 39(1): 24

    Wang J F, Bu C Y, He K, et al. Preparation of ultra-fine molybdenum‒copper composite powders and fine-grained molybdenum‒copper alloys. Powder Metall Technol, 2021, 39(1): 24
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article Views(70) PDF Downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return