AdvanceSearch
Volume 42 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
QI Jinkun, YUE Yongwen, HU Jian, WANG Shuli, ZHAO Gang, KOU Xiaolei, QI Guoqiang, ZHAO Jinghui, REN Shubin. Preparation of M62 bearing steel powders by EIGA and PREP[J]. Powder Metallurgy Technology, 2024, 42(2): 144-152. doi: 10.19591/j.cnki.cn11-1974/tf.2023070006
Citation: QI Jinkun, YUE Yongwen, HU Jian, WANG Shuli, ZHAO Gang, KOU Xiaolei, QI Guoqiang, ZHAO Jinghui, REN Shubin. Preparation of M62 bearing steel powders by EIGA and PREP[J]. Powder Metallurgy Technology, 2024, 42(2): 144-152. doi: 10.19591/j.cnki.cn11-1974/tf.2023070006

Preparation of M62 bearing steel powders by EIGA and PREP

doi: 10.19591/j.cnki.cn11-1974/tf.2023070006
More Information
  • Corresponding author: E-mail: sbren@ustb.edu.cn
  • Received Date: 2023-07-15
  • Publish Date: 2024-04-28
  • High-purity bearing steel powders were prepared by electrode induction melting gas atomization (EIGA) and plasma rotating electrode atomization (PREP), respectively. The particle size distribution, nitrogen and oxygen content, and microstructure of the two high-purity bearing steel powders were analyzed and compared by laser particle size analyzer, oxygen nitrogen analyzer, and scanning electron microscope. The results show that both of the powders are mainly spherical with the PREP powders (M62-PREP) having the higher sphericity, while the EIGA powders (M62-EIGA) has the higher proportion of satellite powders and irregular powders. The median particle size (D50) of the M62-PREP powders is 108.11 μm, significantly higher than that of M62-EIGA powders (D50=38.68 μm). The composition of the two powders is evenly distributed, there is no obvious element segregation, and the M62-EIGA powders are finer. Both of the powders have the good flowability. The N content (mass fraction) of the pre-alloy electrode rods, M62-PREP powders, and M62-EIGA powders are 0.0070%, 0.0072%, and 0.0068%, respectively. The content of N element does not change much. The O content (mass fraction) of M62-PREP powders increases from 0.0008% of the pre-alloy electrode rods to 0.0035%, while the O content of M62-EIGA powders increases to 0.0089%, indicating the significant increase in the O content. The M62-EIGA powder bearing steels after hot isostatic pressing and sintering have the more oxygen containing inclusions, and the M62-PREP powder bearing steels should have the better performance.
  • loading
  • [1]
    Beswick J M, Zhou X B. Rolling Bearing Comprising a Powder Metallurgical Component: US Patent, 7018107. 2006-3-28
    [2]
    李响妹, 卢军, 王琦, 等. 世界粉末冶金高速钢的研究和生产现状. 热处理技术与装备, 2011, 32(5): 34

    Li X M, Lu J, Wang Q, et al. Production and research status of powder metallurgy high speed steels in the world. Heat Treat Technol Equip, 2011, 32(5): 34
    [3]
    柳东徽, 赵亚娟. 轴承钢裂纹缺陷分析与研究. 轧钢, 2015, 32(3): 36

    Liu D H, Zhao Y J. Analysis and study on crack defect of bearing steel. Steel Roll, 2015, 32(3): 36
    [4]
    王坤, 胡锋, 周雯, 等. 轴承钢研究现状及发展趋势. 中国冶金, 2020, 30(9): 119

    Wang K, Hu F, Zhou W, et al. Research status and development trend of bearing steel. China Metall, 2020, 30(9): 119
    [5]
    Persson F, Hulme C N, Jönsson P G. Particle morphology of water atomised iron-carbon powders. Powder Technol, 2022, 397: 116993 doi: 10.1016/j.powtec.2021.11.037
    [6]
    Cui Y J, Zhao Y F, Numata H, et al. Effects of plasma rotating electrode process parameters on the particle size distribution and microstructure of Ti−6Al−4V alloy powder. Powder Technol, 2020, 376: 363 doi: 10.1016/j.powtec.2020.08.027
    [7]
    Walker P F F. Improving the reliability of highly loaded rolling bearings: the effect of upstream processing on inclusions. Mater Sci Technol, 2014, 30(4): 385 doi: 10.1179/1743284713Y.0000000491
    [8]
    Zhao Q C, Luo H, Pan Z M, et al. Study on mechanical properties of rare earth elements modified high carbon chromium bearing steel. Mater Today Commun, 2023, 34: 105329 doi: 10.1016/j.mtcomm.2023.105329
    [9]
    Zeng Q, Hui W J, Zhang Y J, et al. Very high-cycle fatigue performance of high carbon-chromium bearing steels with different metallurgical qualities. Int J Fatigue, 2023, 172: 107632 doi: 10.1016/j.ijfatigue.2023.107632
    [10]
    Li Z, Liu P, Yang C Y, et al. Effect of rare earth elements on microstructure and mechanical properties of bainite/martensite bearing steel. J Mater Res Technol, 2023, 22: 1546 doi: 10.1016/j.jmrt.2022.12.033
    [11]
    Antony L V M, Reddy R G. Processes for production of high-purity metal powders. JOM, 2003, 55: 14
    [12]
    Chen G, Zhao S Y, Tan P, et al. A comparative study of Ti−6Al−4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technol, 2018, 333: 38 doi: 10.1016/j.powtec.2018.04.013
    [13]
    Tang J J, Nie Y, Qian L, et al. Characteristics and atomization behavior of Ti−6Al−4V powder produced by plasma rotating electrode process. Adv Powder Technol, 2019, 30(10): 2330 doi: 10.1016/j.apt.2019.07.015
    [14]
    Yamamoto T D, Takeya H, Saito A T, et al. Magnetocaloric particles of the Laves phase compound HoAl2 prepared by electrode induction melting gas atomization. J Magn Magn Mater, 2022, 547: 168906 doi: 10.1016/j.jmmm.2021.168906
    [15]
    Liu W S, Duan Y T, Ma Y Z, et al. Surface characterization of plasma rotating electrode atomized 30CrMnSiNi2A steel powder. Appl Surf Sci, 2020, 528: 147004 doi: 10.1016/j.apsusc.2020.147004
    [16]
    Yu H S, Zhang N N, Zhou G, et al. Physical models for vacuum-induced multistage atomization of high-entropy FeCoCrNiMo alloy powder for 3D printing. J Mater Res Technol, 2023, 24: 5947 doi: 10.1016/j.jmrt.2023.04.167
    [17]
    崔波, 朱权利, 陈进, 等. 真空氮气雾化法制备3D打印Cu6AlNiSnInCe仿金粉末及表征. 粉末冶金材料科学与工程, 2019, 24(1): 1 doi: 10.3969/j.issn.1673-0224.2019.01.001

    Cui B, Zhu Q L, Chen J, et al. Preparation and characterization of Cu6AlNiSnInCe imitation-gold powder by vacuum nitrogen gas atomization for 3D printing. Mater Sci Eng Powder Metall, 2019, 24(1): 1 doi: 10.3969/j.issn.1673-0224.2019.01.001
    [18]
    Wei M W, Chen S Y, Liang J, et al. Effect of atomization pressure on the breakup of TA15 titanium alloy powder prepared by EIGA method for laser 3D printing. Vacuum, 2017, 143: 185 doi: 10.1016/j.vacuum.2017.06.014
    [19]
    Qaddah B, Chapelle P, Bellot J P, et al. Swirling supersonic gas flow in an EIGA atomizer for metal powder production: Numerical investigation and experimental validation. J Mater Process Technol, 2023, 311: 117814 doi: 10.1016/j.jmatprotec.2022.117814
    [20]
    宰雄飞, 陈仕奇, 吴宏, 等. 无坩埚熔炼气雾化技术制备高纯球形锆粉. 稀有金属, 2018, 42(8): 864

    Zai X F, Chen S Q, Wu H, et al. Preparation of spherical high-purity Zr powders by gas atomization without crucible. Chin J Rare Met, 2018, 42(8): 864
    [21]
    汤慧萍. 等离子旋转电极制粉技术研究进展. 粉末冶金技术, 2023, 41(1): 2

    Tang H P. Progress of plasma rotating electrode processing technology. Powder Metall Technol, 2023, 41(1): 2
    [22]
    孙念光, 陈斌科, 向长淑, 等. 等离子旋转电极雾化制粉技术现状和创新. 粉末冶金工业, 2020, 30(5): 84

    Sun N G, Chen B K, Xiang C S, et al. The current situation and innovation of plasma rotating electrode processing technology. Powder Metall Ind, 2020, 30(5): 84
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article Views(39) PDF Downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return