AdvancedSearch
SHI Qin, ZHU Hejun. Preparation of silver-coated transition metal selenides and properties of silver-based composites[J]. Powder Metallurgy Technology, 2023, 41(6): 536-542. DOI: 10.19591/j.cnki.cn11-1974/tf.2020030013
Citation: SHI Qin, ZHU Hejun. Preparation of silver-coated transition metal selenides and properties of silver-based composites[J]. Powder Metallurgy Technology, 2023, 41(6): 536-542. DOI: 10.19591/j.cnki.cn11-1974/tf.2020030013

Preparation of silver-coated transition metal selenides and properties of silver-based composites

More Information
  • Corresponding author:

    ZHU Hejun, E-mail: hehe666777@163.com

  • Received Date: May 11, 2020
  • Accepted Date: May 11, 2020
  • Available Online: September 19, 2023
  • To improve the interface bonding strength between the substrate and phases in the Ag-based composite, the silver-coated NbSe2 and silver-coated Ti0.09Nb0.91Se2 particles were synthesized by chemical reduction method, and the Ag-based composites were prepared by powder metallurgy. The results show that, the silver particles are uniformly distributed on the surface of the transition metal selenides, and the Ti0.09Nb0.91Se2 particles show the better coating effect. After covering the Ag coating, the contact between the transition metal selenides and the metal matrix silver is increased, leading to the better wettability and the smaller repulsive force between Ag and the transition metal selenide. Moreover, the possibility of the transition metal selenide decomposition in the Ag-based composite materials is greatly reduced after the Ag coating. The densification of the Ag-based composite materials is improved and the interface bonding strength between the Ag substrates and the transition metal selenides is enhanced. Compared with the Ag-based composites with the uncoated NbSe2, the friction properties of the Ag-based composites containing the silver-coated transition metal selenides decrease slightly.

  • [1]
    Shi Q, Tang H, Zhu H, et al. Synthesis and tribological properties of Ti-doped NbSe2 nanoparticles. Chalcogenide Lett, 2014, 11(5): 199
    [2]
    袁梦, 朱和军, 彭红红, 等. 含纳米TiSe2的铁基复合材料的制备及摩擦学性能研究. 粉末冶金技术, 2016, 34(2): 106

    Yuan M, Zhu H J, Peng H H, et al. Synthesis and tribological properties of ferrous based composites containing TiSe2 particles. Powder Metall Technol, 2016, 34(2): 106
    [3]
    Shi Q, Yang J, Peng W X, et al. Synergetic effect of NbSe2 and Cr2Nb on the tribological and electrical behavior of Cu-based electrical contact composites. RSC Adv, 2015, 5(122): 100472 DOI: 10.1039/C5RA17786C
    [4]
    陈帅. NbS2 xSe2(1‒ x)材料制备及其Cu基复合材料摩擦学性能研究[学位论文]. 镇江: 江苏大学, 2014

    Chen S. Preparation of NbS 2xSe 2(1‒x) and Tribology Property of Copper Based Composite Mixed NbS 2xSe 2(1‒x) [Dissertation]. Zhenjiang: Jiangsu University, 2014
    [5]
    施琴. 过渡族金属硒化物电接触复合材料的研究[学位论文]. 镇江: 江苏大学, 2017

    Shi Q. Research on Electrical Contact Composites Containing Transition Metal Selenides [Dissertation]. Zhenjiang: Jiangsu University, 2017
    [6]
    Anand T J S, Shariza S. A study on molybdenum sulphoselenide (MoS x Se2− x , 0≤ x≤2) thin films: Growth from solution and its properties. Electrochim Acta, 2012, 81: 64 DOI: 10.1016/j.electacta.2012.07.077
    [7]
    Rossnagel K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J Phys Condens Matter, 2011, 23(21): 213001 DOI: 10.1088/0953-8984/23/21/213001
    [8]
    Bhatt R, Basu R, Bhattacharya S, et al. Low temperature thermoelectric properties of Cu intercalated TiSe2: a charge density wave material. Appl Phys A, 2013, 111(2): 465 DOI: 10.1007/s00339-012-7536-8
    [9]
    Moustafa S F, El-Badry S A, Sanad A M, et al. Friction and wear of copper–graphite composites made with Cu-coated and uncoated graphite powders. Wear, 2002, 253(7-8): 699 DOI: 10.1016/S0043-1648(02)00038-8
    [10]
    Cui G, Bi Q, Zhu S, et al. Tribological properties of bronze-graphite composites under sea water condition. Tribol Int, 2012, 53(9): 76
    [11]
    魏邦争, 陈闻超, 朱曦, 等. 石墨烯化学镀铜及其对石墨烯/铜基复合材料组织性能的影响. 粉末冶金技术, 2018, 36(5): 363 DOI: 10.19591/j.cnki.cn11-1974/tf.2018.05.008

    Wei B Z, Chen W C, Zhu X, et al. Study of electroless plating Cu by reduced graphene oxide and the effects on the microstructures and properties of RGO/Cu composites. Powder Metall Technol, 2018, 36(5): 363 DOI: 10.19591/j.cnki.cn11-1974/tf.2018.05.008
    [12]
    熊翔, 陈洁, 姚屏萍, 等. MoS2对铁基摩擦材料烧结行为及力学性能的影响. 粉末冶金技术, 2006, 24(3): 182

    Xiong X, Chen J, Yao P P, et al. Effect of MoS2 on the sintering behaviors and mechanical properties of iron-based friction materials. Powder Metall Technol, 2006, 24(3): 182
    [13]
    Song J, Xu L, Xing R, et al. Ag nanoparticles coated NiO nanowires hierarchical nanocomposites electrode for nonenzymatic glucose biosensing. Sens Actuators B, 2013, 182: 675 DOI: 10.1016/j.snb.2013.03.069
    [14]
    Chee S S, Lee J H. Preparation and oxidation behavior of Ag-coated Cu nanoparticles less than 20 nm in size. J Mater Chem C, 2014, 2(27): 5372 DOI: 10.1039/C4TC00509K
    [15]
    Li Y, Liu R, Zhang J, et al. Fabrication and microstructure of W‒Cu composites prepared from Ag-coated Cu powders by electroless plating. Surf Coat Technol, 2019, 361: 302 DOI: 10.1016/j.surfcoat.2019.01.030
  • Related Articles

    [1]Research Progress on Ultra-High Strength Aluminum Matrix Composites[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024120013
    [2]ZHENG Haifei, YIN Yanguo, LI Rongrong. Tribological properties of iron-based bearing materials prepared through FeS surface modification[J]. Powder Metallurgy Technology, 2024, 42(5): 516-524. DOI: 10.19591/j.cnki.cn11-1974/tf.2024050007
    [3]FENG Xiaowei, SI Anheng, FENG Bo, LI Daren. Fabrication, microstructure, and properties of W–Cu graded composites[J]. Powder Metallurgy Technology, 2024, 42(3): 283-289. DOI: 10.19591/j.cnki.cn11-1974/tf.2022020002
    [4]DING Xiaolong, YANG Zhaofang, ZHENG Hejing. Effect of ZrP on properties of CuBi-steel-backed double-layer metal composites[J]. Powder Metallurgy Technology, 2024, 42(2): 128-134. DOI: 10.19591/j.cnki.cn11-1974/tf.2021100013
    [5]Progress in the study of metal-based composite foam material matrix and mechanical properties[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024040002
    [6]HOU Yanan, YANG Kunming, LIU Yue, FAN Tongxiang. Effect of interfacial thermal mismatch on mechanical properties of metal matrix composites[J]. Powder Metallurgy Technology, 2023, 41(6): 490-499, 507. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030033
    [7]YU Chen-xu. Fabrication, microstructure, and properties of W–Re/graphite composites[J]. Powder Metallurgy Technology, 2021, 39(5): 417-422. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030024
    [8]SHI Qin, ZUO Wen-yan, ZHAO Guang-xia. Preparation and properties research of Cu-based electrical contact composites containing Cr and NbSe2[J]. Powder Metallurgy Technology, 2020, 38(6): 455-464. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050005
    [9]SHI Qin, ZHU He-jun. Effects of Ag/RGO composites as lubricant additives on the tribological properties of lubricating oil[J]. Powder Metallurgy Technology, 2020, 38(4): 257-261, 274. DOI: 10.19591/j.cnki.cn11-1974/tf.2020020002
    [10]Study of the C/C composites' tribological properties[J]. Powder Metallurgy Technology, 2004, 22(3): 147-150. DOI: 10.3321/j.issn:1001-3784.2004.03.005
  • Cited by

    Periodical cited type(2)

    1. 韩鑫磊,范玉卓,梁滢雪,陈良玉,彭一洋,李桂景. 压制力对银基触点材料物理和电接触性能的影响. 粉末冶金技术. 2025(01): 42-51 . 本站查看
    2. 曲强,朱修崇,涂有旺,康潇,张雷. Ag/MoS_2-WS_2复合材料的微纳摩擦学特性. 中南大学学报(自然科学版). 2024(08): 3060-3071 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1645) PDF downloads (44) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return