Citation: | ZHANG Wei, XIAO Weijian, YUAN Chuanniu, ZHANG Ning, CHEN Rongxin. Influence mechanism of force chain on jamming behavior in powder compaction based on 3D discrete element model[J]. Powder Metallurgy Technology, 2024, 42(4): 403-410, 417. DOI: 10.19591/j.cnki.cn11-1974/tf.2022080005 |
To simulate the uniaxial powder compacting process, the 3D particle accumulation was generated by 3D discrete element method technology based on the experimental grading ratio. The evolution law and topological properties of the force chains were investigated during the powder compacting process, the jamming phenomenon was further studied using the velocity and coordination number of particles, and the correlation mechanism between the force chain and jamming behavior was discussed. The results show that, as the compression strength of the upper die gradually increases from 0 to 60 MPa, the number proportion of force chain particles rapidly increases to more than 40.0%, while the number proportion of high stress particles is stable above 12.5%. When the pressure exceeds 60 MPa, the force chains bend and form ring structure, causing the jamming phenomenon. As a result, the jammed point is set to 60 MPa. The jamming phenomenon also effects the powder densification. The axial velocity of the powder particles in the upper area is faster and the rangeability is larger than that of the powder particles in the lower area during the powder compaction process. However, when the compaction process is completed, the densification of the powder particles in the upper area is higher than that of the powder particles in the lower area.
[1] |
孟凡净, 逄明华, 花少震, 等. 粉末冶金单轴压制过程中的力学机制研究. 机械科学与技术, 2020, 39(7): 1128
Meng F J, Pang M H, Hua S Z, et al. Research of mechanical mechanism in uniaxial pressing process of powder metallurgy. Mech Sci Technol Aerosp Eng, 2020, 39(7): 1128
|
[2] |
李静. 计算机仿真在粉末冶金过程的应用及研究进展. 粉末冶金技术, 2021, 39(4): 366
Li J. Application and research progress of computer simulation used in powder metallurgy process. Powder Metall Technol, 2021, 39(4): 366
|
[3] |
吴斌, 刘军, 杨勇. 基于有限元仿真分析高速压实粉末时模壁摩擦因数对压制效果的影响. 粉末冶金技术, 2014, 32(6): 442
Wu B, Liu J, Yang Y. The influence of the mold wall friction coefficient on HVC powder based on the finite element simulation analysis. Powder Metall Technol, 2014, 32(6): 442
|
[4] |
张璐栋, 刘军, 罗晓龙, 等. 基于离散元法的颗粒高速压制模拟及动态力学分析. 粉末冶金技术, 2020, 38(5): 350
Zhang L D, Liu J. Luo X L, et al. High velocity compaction simulation and dynamic mechanical analysis of particles based on discrete element method. Powder Metall Technol, 2020, 38(5): 350
|
[5] |
莫品强, 赵子露, 胡裕琛, 等. 颗粒堆积体各向异性及宏细观力学特性的三维离散元模拟研究. 太原理工大学学报, 2022, 53(1): 129
Mo P Q, Zhao Z L, Hu Y C, et al. Anisotropy and mechanical behaviour of sand pile using 3D DEM simulation. J Taiyuan Univ Technol, 2022, 53(1): 129
|
[6] |
Peters J F, Muthuswamy M, Wibowo J, et al. Characterization of force chains in granular material. Phys Rev E, 2005, 72(1): 041307
|
[7] |
张超, 刘军, 罗晓龙, 等. 基于离散元法的金属粉末压制加载速度对压力分布影响. 粉末冶金技术, 2019, 37(2): 98
Zhang C, Liu J, Luo X L, et al. Effect of loading speed on pressure distribution in metal powder pressing based on discrete element method. Powder Metall Technol, 2019, 37(2): 98
|
[8] |
王海陆, 刘军, 林立, 等. 基于离散元的不同粒径配比粉末压制相对密度与力链分析. 粉末冶金技术, 2021, 39(6): 490
Wang H L, Liu J, Lin L, et al. Compacting relative density and force chain analysis of powders with different particle size ratios based on discrete element. Powder Metall Technol, 2021, 39(6): 490
|
[9] |
Zhang W, Zhou J, Zhang X J, et al. Quantitative investigation into the relation between force chains and stress transmission during high-Velocity compaction of powder. J Korean Phys Soc, 2019, 74: 660 DOI: 10.3938/jkps.74.660
|
[10] |
Zhu H X, Nicot F, Darve F. Meso-structure organization in two-dimensional granular materials along biaxial loading path. Int J Solids Struct, 2016, 96: 25 DOI: 10.1016/j.ijsolstr.2016.06.025
|
[11] |
Göncü F, Durán O, Luding S. Constitutive relations for the isotropic deformation of frictionless packings of polydisperse spheres. CR Mec, 2010, 338(10-11): 570 DOI: 10.1016/j.crme.2010.10.004
|
[12] |
Radhakrishnan R, Royer J R, Poon W, et al. Force chains and networks: wet suspensions through dry granular eyes. Granular Matter, 2020, 22: 29 DOI: 10.1007/s10035-019-0992-5
|
[13] |
Ward A A, Hareland C A, Palmerio N E, et al. Thermally activated jamming in ultrasonic powder compaction. Adv Eng Mater, 2021, 23(1): 2001019 DOI: 10.1002/adem.202001019
|
[14] |
Wang J Z, Qu X H, Yin H Q, et al. High velocity compaction of ferrous powder. Powder Technol, 2009, 192(1): 131 DOI: 10.1016/j.powtec.2008.12.007
|
[15] |
赵婷婷, 冯云田. 大规模颗粒系统的精确缩尺和粗粒化离散元方法. 计算力学学报, 2022, 39(3): 365 DOI: 10.7511/jslxCMGM202213
Zhao T T, Feng Y T. Exact scaling laws and coarse-grained discrete element modelling of large scale granular systems. Chin J Comput Mech, 2022, 39(3): 365 DOI: 10.7511/jslxCMGM202213
|
[16] |
Chen W, Roberts A, Katterfeld A, et al. Modelling the stability of iron ore bulk cargoes during marine transport. Powder Technol, 2018, 326: 255 DOI: 10.1016/j.powtec.2017.12.006
|
[17] |
Grima A P, Wypych P W. Development and validation of calibration methods for discrete element modelling. Granular Matter, 2011, 13: 127 DOI: 10.1007/s10035-010-0197-4
|
[18] |
Mindlin R D, Deresiewicz H. Elastic spheres in contact under varying oblique forces. Appl Mech Rev, 1953, 20(3): 327 DOI: 10.1115/1.4010702
|
[19] |
潘宇, 王蕉, 楚锡华. 接触行为对颗粒材料中应力波波速与能量的影响. 东北大学学报(自然科学版), 2021, 42(8): 1136 DOI: 10.12068/j.issn.1005-3026.2021.08.011
Pan Y, Wang J, Chu X H. Influence of contact behavior on stress wave velocity and energy in granular materials. J Northeastern Univ Nat Sci, 2021, 42(8): 1136 DOI: 10.12068/j.issn.1005-3026.2021.08.011
|
[20] |
Fu L L, Zhou S H, Guo P J, et al. Induced force chain anisotropy of cohesionless granular materials during biaxial compression. Granular Matter, 2019, 21: 52 DOI: 10.1007/s10035-019-0899-1
|
[21] |
陈庆发, 王少平, 秦世康. 柔性隔离层下多漏斗散体矿岩力链演化特征的离散元模拟. 工程科学学报, 2020, 42(9): 1119
Chen Q F, Wang S P, Qin S K. Discrete element simulation for evolution characteristics of multi-funnel mineral-rock force chain under flexible isolation layer. Chin J Eng, 2020, 42(9): 1119
|
[22] |
Karapiperis K, Andrade J E. Nonlocality in granular complex networks: Linking topology, kinematics and forces. Extrem Mech Lett, 2021, 42: 101041 DOI: 10.1016/j.eml.2020.101041
|
[23] |
杨晓东. 密集颗粒物料蠕变特性的离散模拟研究[学位论文]. 北京: 中国科学院大学, 2021
Yang X D. Discrete Modeling of the Creeping Characteristics of Dense Granular Materials [Dissertation]. Beijing: University of Chinese Academy of Sciences, 2021
|
[24] |
Rothenburg L, Kruyt N P. Critical state and evolution of coordination number in simulated granular materials. Int J Solids Struct, 2004, 41(21): 5763 DOI: 10.1016/j.ijsolstr.2004.06.001
|
[25] |
Srivastava I, Silbert L E, Lechman J B, et al. Flow and arrest in stressed granular materials. Soft Matter, 2022, 18(4): 735 DOI: 10.1039/D1SM01344K
|
[1] | HAN Xinlei, FAN Yuzhuo, LIANG Yingxue, CHEN Liangyu, PENG Yiyang, LI Guijing. Effect of pressing force on physical and electrical contact properties of silver-based contact materials[J]. Powder Metallurgy Technology, 2025, 43(1): 42-51. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100006 |
[2] | CHEN Xinyu, LI Fenqiang, JIANG Jishuai. Application and development of numerical simulation on mesoscopic analysis of powder compaction[J]. Powder Metallurgy Technology, 2024, 42(4): 418-426. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050001 |
[3] | WANG Hai-lu, LIU Jun, LIN Li, ZHANG Chao, ZHANG Lu-dong, KE Jian-zhong, LI Hua-ying. Compacting relative density and force chain analysis of powders with different particle size ratios based on discrete element[J]. Powder Metallurgy Technology, 2021, 39(6): 490-498. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120014 |
[4] | XIAO Chang-jiang, CHEN Yi-guang, LI Xiao-long, YAN Zi-yao. Method and mechanism analysis of improving the holding force between Ni-coated diamond and Cu-matrix bonding[J]. Powder Metallurgy Technology, 2020, 38(1): 25-29. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.004 |
[5] | ZHANG Long, ZHANG Xiao-min, ZHENG Heng-wei. Analysis on sintering driving force of unequal-sized particles in generalized thermoelastic diffusion[J]. Powder Metallurgy Technology, 2019, 37(4): 259-263. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.004 |
[6] | ZHANG Chao, LIU Jun, LUO Xiao-long, TIAN Shi-jun, LIN Li, ZHOU Chun. Effect of loading speed on pressure distribution in metal powder pressing based on discrete element method[J]. Powder Metallurgy Technology, 2019, 37(2): 98-103, 111. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.02.003 |
[7] | XIAO Chang-jiang, DUO Zhi-qiang, LI Zheng-xin. Effect of Ti on the holding force of Al-based bonded diamond bits[J]. Powder Metallurgy Technology, 2018, 36(1): 21-25. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.01.004 |
[8] | Wang Xu, Wang Xiuhui, Zhao Guoquan, Yin Jianlong, Ni Huanhuan, Gao Hong, Yang Jinlong. Preparation of YAG powder through mechano-chemical method[J]. Powder Metallurgy Technology, 2014, 32(1): 54-58. DOI: 10.3969/j.issn.1001-3784.2014.01.010 |
[9] | Yi Mingjun, Yin Haiqing, Qu Xuanhui, Wang Jianzhong, Zhou Shengyu, Yuan Xianjie. Influence of force and stress wave on the quality of green compacts in high velocity compaction[J]. Powder Metallurgy Technology, 2009, 27(3): 207-211. |
[10] | Qin Wanzhong. P/M CHAIN WHEELS FOR OIL PUMP[J]. Powder Metallurgy Technology, 2000, 18(3): 204-207. |