AdvancedSearch
CHEN Xinyu, LI Fenqiang, JIANG Jishuai. Application and development of numerical simulation on mesoscopic analysis of powder compaction[J]. Powder Metallurgy Technology, 2024, 42(4): 418-426. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050001
Citation: CHEN Xinyu, LI Fenqiang, JIANG Jishuai. Application and development of numerical simulation on mesoscopic analysis of powder compaction[J]. Powder Metallurgy Technology, 2024, 42(4): 418-426. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050001

Application and development of numerical simulation on mesoscopic analysis of powder compaction

More Information
  • Corresponding author:

    LI Fenqiang, E-mail: lfq@xmut.edu.cn

  • Received Date: May 10, 2022
  • Available Online: September 13, 2022
  • In recent years, numerical simulation technology has become an important method to study the powder compaction process. The discrete element method (DEM) is used to study the mechanical behavior of powder particles from the mesoscopic perspective, analyze the characteristics and evolution process of force chain, and reveal the influence of the mesoscopic structure on the macroscopic properties. The multi-particle finite element method (MPFEM) is used to study the compression deformation mechanisms of the different powders at the particle level. The application and development of DEM and MPFEM on the powder compaction were reviewed in this paper, and the difficulties of MPFEM used in powder compaction were summarized.It was concluded that the study on the evolution law of powder force chain and the mechanism of particle densification under the dynamic loading could be regarded as a prospect for future exploration

  • [1]
    孙其诚, 刘晓星, 张国华, 等. 密集颗粒物质的介观结构. 力学进展, 2017, 47: 263 DOI: 10.6052/1000-0992-16-021

    Sun Q C, Liu X X, Zhang G H, et al. The mesoscopic structures of dense granular materials. Adv Mech, 2017, 47: 263 DOI: 10.6052/1000-0992-16-021
    [2]
    尤萌萌, 潘诗琰, 申小平, 等. 粉末压制过程数值模拟的研究现状及展望. 粉末冶金工业, 2017, 27(4): 49

    You M M, Pan S Y, Shen X P, et al. Current progress and prospect of numerical simulation in powder compaction. Powder Metall Ind, 2017, 27(4): 49
    [3]
    郭岩岩, 历长云, 冀国良, 等. 粉末致密化过程数值模拟研究现状. 材料导报, 2022, 36(18): 174 DOI: 10.11896/cldb.20080161

    Guo Y Y, Li C Y, Ji G L, et al. Research status of numerical simulation of powder densification process. Mater Rep, 2022, 36(18): 174 DOI: 10.11896/cldb.20080161
    [4]
    孙其诚, 王光谦. 颗粒物质力学导论. 北京: 科学出版社, 2009

    Sun Q C, Wang G Q. Introduction to the Mechanics of Particulate Matter. Beijing: Science Press, 2009
    [5]
    颜士伟, 黄尚宇, 胡建华, 等. 数值仿真技术在粉末冶金零件制造中的应用及研究进展. 粉末冶金技术, 2017, 35(1): 57 DOI: 10.3969/j.issn.1001-3784.2017.01.010

    Yan S W, Huang S Y, Hu J H, et al. Development and application of numerical simulation in powder metallurgy manufacturing. Powder Metall Technol, 2017, 35(1): 57 DOI: 10.3969/j.issn.1001-3784.2017.01.010
    [6]
    Sun Q C, Jin F, Liu J G. Understanding force chains in dense granular materials. Int J Mod Phys B, 2010, 24(29): 5743 DOI: 10.1142/S0217979210055780
    [7]
    Guo P J. Critical length of force chains and shear band thickness in dense granular materials. Acta Geotech, 2012, 7: 41 DOI: 10.1007/s11440-011-0154-3
    [8]
    孟凡净, 刘华博, 花少震, 等. 金属粉末单轴压制过程中的摩擦机制及力学特性分析. 应用力学学报, 2021, 38(3): 1286 DOI: 10.11776/cjam.38.03.B057

    Meng F J, Liu H B, Hua S Z, et al. Analysis of friction mechanism and mechanical characteristics of metal powder in the process of uniaxial pressing. Chin J Appl Mechs, 2021, 38(3): 1286 DOI: 10.11776/cjam.38.03.B057
    [9]
    张炜, 谈健君, 张帅, 等. 基于颗粒物质力学的铁粉末压制中摩擦特性对力链演化影响. 摩擦学学报, 2022, 42(2): 386

    Zhang W, Tan J J, Zhang S, et al. Influence of tribological characteristics on the evolution of force chains in ferrous powder compaction based on granular matter theory. Tribology, 2022, 42(2): 386
    [10]
    Zhang N, Zhang S, Tan J J, et al. Correlation mechanism between force chains and friction mechanism during powder compaction. Chin Phys B, 2022, 31(2): 486
    [11]
    Zhang W, Zhang S, Tan J, et al. Investigation on the friction mechanism and its relation to the force chains during powder compaction. J Phys Soc Jpn, 2020, 89(12): 124602 DOI: 10.7566/JPSJ.89.124602
    [12]
    Zhang W, Zhang S, Tan J, et al. Relation between force chain quantitative characteristics and side wall friction behaviour during ferrous powder compaction. Granular Matter, 2022, 24(3): 86 DOI: 10.1007/s10035-022-01244-4
    [13]
    Peters J F, Muthuswamy M, Wibowo J, et al. Characterization of force chains in granular material. Phys Rev E, 2005, 72: 041307
    [14]
    Bassett D S, Owens E T, Porter M A, et al. Extraction of force-chain network architecture in granular materials using community detection. Soft Matter, 2015, 11: 2731 DOI: 10.1039/C4SM01821D
    [15]
    Huang Y M, Daniels K E. Friction and pressure dependence of force chain communities in granular materials. Granular Matter, 2016, 18: 85 DOI: 10.1007/s10035-016-0681-6
    [16]
    王飞, 刘焜, 王伟. 颗粒的堵塞行为对单向压制过程的影响. 应用力学学报, 2014, 31(3): 400 DOI: 10.11776/cjam.31.03.D028

    Wang F, Liu K, Wang W. Simulation of jamming phenomenon of granular matter under single-action pressing process. Chin J Appl Mech, 2014, 31(3): 400 DOI: 10.11776/cjam.31.03.D028
    [17]
    张炜, 周剑, 于世伟, 等. 双轴压缩下颗粒物质接触力与力链特性研究. 应用力学学报, 2018, 35(3): 530

    Zhang W, Zhou J, Yu S W, et al. Investigation on contact force and force chain of granular matter in biaxial compression. Chin J Appl Mech, 2018, 35(3): 530
    [18]
    张超, 刘军, 罗晓龙, 等. 基于离散元法的金属粉末压制加载速度对压力分布影响. 粉末冶金技术, 2019, 37(2): 98

    Zhang C, Liu J, Luo X L, et al. Effect of loading speed on pressure distribution in metal powder pressing based on discrete element method. Powder Metall Technol, 2019, 37(2): 98
    [19]
    Zhang L R, Nguyen N G H, Lambert S, et al. The role of force chains in granular materials: from statics to dynamics. Eur J Environ Civ Eng, 2017, 21(7-8): 874 DOI: 10.1080/19648189.2016.1194332
    [20]
    张炜, 周剑, 于世伟, 等. 基于颗粒物质力学的粉末高速压制过程中应力传递分布分析. 应用力学学报, 2018, 35(1): 154

    Zhang W, Zhou J, Yu S W, et al. Investigation of the stress transmission characterization in highvelocity powder compaction based on mechanics of granular materials. Chin J Appl Mech, 2018, 35(1): 154
    [21]
    张炜, 周剑, 于世伟, 等. 离散元法金属粉末高速压制过程中力链特性量化研究. 机械工程学报, 2018, 54(10): 85 DOI: 10.3901/JME.2018.10.085

    Zhang W, Zhou J, Yu S W, et al. Quantitative investigation on force chains of metal powder in high velocity compaction by discrete element method. J Mech Eng, 2018, 54(10): 85 DOI: 10.3901/JME.2018.10.085
    [22]
    王海陆, 刘军, 林立, 等. 基于离散元的不同粒径配比粉末压制相对密度与力链分析. 粉末冶金技术, 2021, 39(6): 490

    Wang H L, Liu J, Lin L, et al. Compacting relative density and force chain analysis of powders with different particle sizes and proportions based on discrete element. Powder Metall Technol, 2021, 39(6): 490
    [23]
    Zhang L, Wang Y J, Zhang J. Force-chain distributions in granular systems. Phys Rev E, 2014, 89(1): 012203 DOI: 10.1103/PhysRevE.89.012203
    [24]
    Gendelman O, Pollack Y G, Procaccia I, et al. What determines the static force chains in stressed granular media? Phys Rev Lett, 2016, 116(7): 078001
    [25]
    Iikawa N, Bandi M M, Katsuragi H. Sensitivity of granular force chain orientation to disorder-induced metastable relaxation. Phys Rev Lett, 2016, 116(12): 128001 DOI: 10.1103/PhysRevLett.116.128001
    [26]
    李达. 铁基粉末高速压制的数值模拟分析[学位论文]. 合肥: 合肥工业大学, 2014

    Li D. Numerical Simulation Analysis of High-Speed Compaction of Iron-Based Powder [Dissertation]. Hefei: Hefei University of Technology, 2014
    [27]
    Peng K F, Pan H, Zheng Z J, et al. Compaction behavior and densification mechanisms of Cu−W composite powders. Powder Technol, 2021, 382: 478 DOI: 10.1016/j.powtec.2021.01.013
    [28]
    Zhou J, Zhu C Y, Zhang W, et al. Experimental and 3D MPFEM simulation study on the green density of Ti–6Al–4V powder compact during uniaxial high velocity compaction. J Alloys Compd, 2020, 817: 153226 DOI: 10.1016/j.jallcom.2019.153226
    [29]
    Han P, An X Z, Zhang Y X, et al. Particulate scale MPFEM modeling on compaction of Fe and Al composite powders. Powder Technol, 2017, 314: 69 DOI: 10.1016/j.powtec.2016.11.021
    [30]
    Han P, An X Z, Wang D F, et al. MPFEM simulation of compaction densification behavior of Fe−Al composite powders with different size ratios. J Alloys Compd, 2018, 741: 473 DOI: 10.1016/j.jallcom.2018.01.198
    [31]
    Huang F, An X Z, Zhang Y X, et al. Multi-particle FEM simulation of 2D compaction on binary Al/SiC composite powders. Powder Technol, 2017, 314: 39 DOI: 10.1016/j.powtec.2017.03.017
    [32]
    Wang D F, An X Z, Han P, et al. Particulate scale numerical investigation on the compaction of TiC-316L composite powders. Math Prob Eng, 2020, 2020(Pt.6): 5468076.1
    [33]
    Feng Y B, Mei D Q, Wang Y C. Cohesive zone method based multi particle finite element simulation of compaction densification process of Al and NaCl laminar composite powders. J Phy Chem Solids, 2019, 134: 35 DOI: 10.1016/j.jpcs.2019.05.020
    [34]
    Xu L, Wang Y S, Li C Y, et al. MPFEM simulation on hot-pressing densification process of SiC particle/6061Al composite powders. J Phy Chem Solids, 2021, 159: 110259 DOI: 10.1016/j.jpcs.2021.110259
    [35]
    Li M, Lim C V S, Zou R P, et al. Multi-particle FEM modelling on hot isostatic pressing of Ti6Al4V powders. Int J Mech Sci, 2021, 196: 106288 DOI: 10.1016/j.ijmecsci.2021.106288
    [36]
    Jia Q, An X Z, Zhao H Y, et al. Compaction and solid-state sintering of tungsten powders: MPFEM simulation and experimental verification. J Alloys Compd, 2018, 750: 341 DOI: 10.1016/j.jallcom.2018.03.387
    [37]
    Zou Y, An X Z, Zou R P. Investigation of densification behavior of tungsten powders during hot isostatic pressing with a 3D multi-particle FEM approach. Powder Technol, 2020, 361: 297 DOI: 10.1016/j.powtec.2019.08.014
    [38]
    Zhang Y X, An X Z, Zhang Y L. Multi-particle FEM modeling on microscopic behavior of 2D particle compaction. Appl Phys A, 2015, 118: 1015 DOI: 10.1007/s00339-014-8861-x
    [39]
    Zou Y, An X Z, Jia Q, et al. Three-dimensional MPFEM modelling on isostatic pressing and solid phase sintering of tungsten powders. Powder Technol, 2019, 354: 854 DOI: 10.1016/j.powtec.2019.07.013
    [40]
    Loidolt P, Ulz M H, Khinast J. Modeling yield properties of compacted powder using a multi-particle finite element model with cohesive contacts. Powder Technol, 2018, 336: 426 DOI: 10.1016/j.powtec.2018.06.018
    [41]
    Loidolt P, Ulz M H, Khinast J. Prediction of the anisotropic mechanical properties of compacted powders. Powder Technol, 2019, 345: 589 DOI: 10.1016/j.powtec.2019.01.048
    [42]
    Zhou L W, Han P, Liu K, et al. Particulate scale multiparticle finite element method modeling on the 2D compaction and release of copper powder. Math Prob Eng, 2019, 2019(Pt.23): 5269302.1
    [43]
    Güner F, Cora Ö N, Sofuoğlu H. Numerical modeling of cold powder compaction using multi particle and continuum media approaches. Powder Technol, 2015, 271: 238 DOI: 10.1016/j.powtec.2014.11.008
    [44]
    Güner F, Cora Ö N, Sofuoğlu H. Effects of friction models on the compaction behavior of copper powder. Tribol Int, 2018, 122: 125 DOI: 10.1016/j.triboint.2018.02.022
    [45]
    Güner F, Sofuoğlu H. Effects of process parameters on copper powder compaction process using multi-particle finite element method. IOP Conf Ser Mater Sci Eng, 2018, 295: 012027 DOI: 10.1088/1757-899X/295/1/012027
  • Related Articles

    [1]ZHANG Wei, XIAO Weijian, YUAN Chuanniu, ZHANG Ning, CHEN Rongxin. Influence mechanism of force chain on jamming behavior in powder compaction based on 3D discrete element model[J]. Powder Metallurgy Technology, 2024, 42(4): 403-410, 417. DOI: 10.19591/j.cnki.cn11-1974/tf.2022080005
    [2]LI Yuhua, HE Yuxin, ZHANG Qian, ZHAO Rong, WANG Haojie, CHU Jinghui, NIU Libin. 2D and 3D finite element comparative analysis of compressive properties of porous titanium[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024030007
    [3]WANG Hai-lu, LIU Jun, LIN Li, ZHANG Chao, ZHANG Lu-dong, KE Jian-zhong, LI Hua-ying. Compacting relative density and force chain analysis of powders with different particle size ratios based on discrete element[J]. Powder Metallurgy Technology, 2021, 39(6): 490-498. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120014
    [4]ZHAO Yan-bo, MA Lin, LIU Bo, SHANG Zhu-xian. Analysis on vibration packing density of pure iron powders based on discrete element method[J]. Powder Metallurgy Technology, 2020, 38(6): 429-435. DOI: 10.19591/j.cnki.cn11-1974/tf.2019070006
    [5]ZHANG Lu-dong, LIU Jun, LUO Xiao-long, ZHANG Chao, LIN Li, ZHOU Chun, WANG Hai-lu. High velocity compaction simulation and dynamic mechanical analysis of particles based on discrete element method[J]. Powder Metallurgy Technology, 2020, 38(5): 350-356, 362. DOI: 10.19591/j.cnki.cn11-1974/tf.2019040013
    [6]SHANG Zhu-xian, MA Lin, LIU Bo, ZHAO Yan-bo. Effect analysis of particle crushing by ultrasonic vibration milling device based on extended distinct element method[J]. Powder Metallurgy Technology, 2019, 37(2): 129-133, 139. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.02.008
    [7]ZHANG Chao, LIU Jun, LUO Xiao-long, TIAN Shi-jun, LIN Li, ZHOU Chun. Effect of loading speed on pressure distribution in metal powder pressing based on discrete element method[J]. Powder Metallurgy Technology, 2019, 37(2): 98-103, 111. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.02.003
    [8]ZHANG Ming, LIU Guo-quan, HU Ben-fu, Geng Xiao-xiao, WANG Hao. Finite element simulation and experimental verification on hot extrusion of a novel nickel-base P/M superalloy[J]. Powder Metallurgy Technology, 2018, 36(3): 223-229. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.011
    [9]TIAN Shi-jun, LIU Jun, LUO Xiao-long, YANG Yong. Finite element analysis of the influence of electromagnetic impact loading collector-magnetic on electromagnetic force of driven plate[J]. Powder Metallurgy Technology, 2017, 35(4): 267-272. DOI: 10.19591/j.cnki.cn11-1974/tf.2017.04.005
    [10]Wang Deguang, Wu Yucheng, Jiao Minghua, Yu Jianwei, Xie Ting, Yin Yanguo. Finite element simulation to influence of compacting mode on PM product properties[J]. Powder Metallurgy Technology, 2008, (2): 88-93.

Catalog

    Article Metrics

    Article views (280) PDF downloads (69) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return