AdvancedSearch
ZHANG Jie, HU Jian-hua. Effect of technological parameters on high indium and high tin silver-based brazing filler metal powders by electromagnetic compaction molding[J]. Powder Metallurgy Technology, 2019, 37(3): 207-213. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.008
Citation: ZHANG Jie, HU Jian-hua. Effect of technological parameters on high indium and high tin silver-based brazing filler metal powders by electromagnetic compaction molding[J]. Powder Metallurgy Technology, 2019, 37(3): 207-213. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.008

Effect of technological parameters on high indium and high tin silver-based brazing filler metal powders by electromagnetic compaction molding

More Information
  • Corresponding author:

    ZHANG Jie, 490617801@qq.com

  • Received Date: June 27, 2018
  • The electromagnetic compaction process of high indium and high tin silver-based brazing filler metal powders was simulated by EDEM software, according to the theory of discrete element, the influences of technological parameters on Ag–Cu–Sn–In series brazing filler metal powders during the compaction process were investigated, the densification behavior of silver-based brazing filler metal powders was analyzed, and the effects of indium and tin on the relative density of compact was studied.The compaction process of Ag–19.5 Cu–15 In–15 Sn solder powders was simulated in different voltages and capacitance; the effects of discharge parameters on the relative density of compact were analyzed.Finally, the simulation was verified by preparing solder compact in the suppression equipment.The results show that, in the same compacting force, the higher the contents of indium by mass are, the higher the relative density of compact is; in the same capacitance, the higher the voltage is, the higher the relative density of compact is, but the amplification gradually slows down; in the same voltage, the higher the capacitance is, the higher the relative density of compact is, and the amplification is roughly constant.The verification results show that, the simulation error is less than 8%, the discrete element simulation model of brazing filler metal electromagnetic compaction has a certain reference value.
  • [1]
    张启运, 庄鸿寿.钎焊手册. 2版.北京: 机械工业出版社, 2008

    Zhang Q Y, Zhuang H S. Brazing and Soldering Manual. 2nd Ed. Beijing: China Machine Press, 2008
    [2]
    林丽恒, 刁晓刚, 罗海波.国内外异种材料钎焊的研究现状及发展趋势.焊接技术, 2016, 45(8): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ201608001.htm

    Lin L H, Diao X G, Luo H B. Research status and development trend of domestic and foreign brazing of dissimilar materials. Weld Technol, 2016, 45(8): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ201608001.htm
    [3]
    孙斌. Ag-Cu-P-Ge系电子封装中温钎料生产工艺及组织性能研究, 长沙: 中南大学, 2009

    Sun B. Study on Production Technology and Microstructure Properties of Ag-Cu-P-Ge Solder for Electronic Packaging Materials[Dissertation]. Changsha: Central South University, 2009
    [4]
    丘富顺.电子封装自动软钎焊用焊铝锡膏和焊锡丝的研制, 广州: 华南理工大学, 2015

    Qiu F S. Development of the Solder Paste for Aluminum Soldering and Solder Wires for Automated Soldering in Electronic Packaging[Dissertation]. Guangzhou: South China University of Technology, 2015
    [5]
    张连生. Al-Si-Mg系锻铝合金真空钎焊低熔点钎料的研究, 天津: 河北工业大学, 2006

    Zhang L S. The Study of Low-Melting-Point Filler Metal for Al-Si-Mg Series Alloys Vacuum Brazing[Dissertation]. Tianjin: Hebei University of Technology, 2006
    [6]
    刘运展, 胡建华, 黄尚宇, 等. Ag-Cu钎料粉末压制致密化行为.锻压技术, 2018, 43(4): 76 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201804018.htm

    Liu Y Z, Hu J H, Huang S Y, et al. Densification behavior of powder pressing for Ag-Cu solder. Forg Stamp Technol, 2018, 43(4): 76 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201804018.htm
    [7]
    胡飞, 胡建华, 胡晓华, 等.电磁压制BAg45Cu28Zn25Sn2钎料的液相烧结参数对钎焊接头力学性能的影响.热加工工艺, 2018, 47(5): 29 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201805007.htm

    Hu F, Hu J H, Hu X H, et al. Influence of liquid sintering parameters of electromagnetic pressing BAg45Cu28Zn25Sn2 solder on mechanical properties of brazed joint. Hot Working Technol, 2018, 47(5): 29 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201805007.htm
    [8]
    颜士伟, 黄尚宇, 胡建华, 等.数值仿真技术在粉末冶金零件制造中的应用及研究进展.粉末冶金技术, 2017, 35(1): 57 DOI: 10.3969/j.issn.1001-3784.2017.01.010

    Yan S W, Huang S Y, Hu J H, et al. Development and application of numerical simulation in powder metallurgy manufacturing. Powder Metall Technol, 2017, 35(1): 57 DOI: 10.3969/j.issn.1001-3784.2017.01.010
    [9]
    Nosewicz S, Rojek J, Chmielewski M, et al. Discrete element modeling and experimental investigation of hot pressing of intermetallic NiAl powder. Adv Powder Technol, 2017, 28(7): 1745. DOI: 10.1016/j.apt.2017.04.012
    [10]
    Criss E M, Meyers M A. Braze welding of cobalt with a silver-copper filler. J Mater Res Technol, 2015, 4(1): 44. DOI: 10.1016/j.jmrt.2014.11.002
    [11]
    Meng Z H, Huang S Y, Yang M. Effects of processing parameters on density and electric properties of electric ceramic compacted by low-voltage electromagnetic compaction. J Mater Process Technol, 2009, 209(2): 672. DOI: 10.1016/j.jmatprotec.2008.02.038
    [12]
    Zhang X P, Shi Y W. A dissolution model of base metal in liquid brazing filler metal during high temperature brazing. Scr Mater, 2004, 50(7): 1003. DOI: 10.1016/j.scriptamat.2003.12.032
    [13]
    Yang T Y, Zhang D K, Wang K H, et al. Effect of strontium and SmO on the microstructure and fracture mode of AlSi-Mg2Si brazing filler metal. J Rare Earths, 2016, 34(2): 187. DOI: 10.1016/S1002-0721(16)60013-3
    [14]
    李红, Tillmann W, 栗卓新, 等.高品质高可靠性钎料的技术发展和应用.焊接学报, 2014, 35(4): 108 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201404026.htm

    Li H, Tillmann W, Li Z X, et al. Development and application of high quality and high reliability brazing filler materials. Trans China Weld Inst, 2014, 35(4): 108 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201404026.htm
    [15]
    王苇, 黄尚宇, 廖行, 等.电磁压制Ag-Cu-In-Sn钎料烧结工艺及润湿性能的研究.热加工工艺, 2016, 45(19): 166 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201619050.htm

    Wang W, Huang S Y, Liao X, et al. Sintering process and wetting properties of Ag-Cu-In-Sn filler metal with electromagnetic compaction. Hot Working Technol, 2016, 45(19): 166 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201619050.htm
    [16]
    刘煜, 李益民, 夏卿坤, 等.粉末注射成形的离散元模拟实验研究.材料工程, 2014(4): 85 DOI: 10.3969/j.issn.1001-4381.2014.04.015

    Liu Y, Li Y M, Xia Q K, et al. Experimental study on discrete element simulation of powder injection molding. JMater Eng, 2014(4): 85 DOI: 10.3969/j.issn.1001-4381.2014.04.015
    [17]
    申小平, 许桂生.粉末冶金压坯缺陷分析.粉末冶金技术, 2012, 30(4): 279 DOI: 10.3969/j.issn.1001-3784.2012.04.007

    Shen X P, Xu G S. Defect analysis of powder metallurgy compact. Powder Metall Technol, 2012, 30(4): 279 DOI: 10.3969/j.issn.1001-3784.2012.04.007
  • Related Articles

    [1]LI Huaying, LIU Jun, ZHANG Chao, ZHANG Ludong, WANG Hailu, KE Jianzhong. Relative density of conical parts under impact loading based ondiscrete element[J]. Powder Metallurgy Technology, 2023, 41(4): 322-329. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030016
    [2]WANG Hai-lu, LIU Jun, LIN Li, ZHANG Chao, ZHANG Lu-dong, KE Jian-zhong, LI Hua-ying. Compacting relative density and force chain analysis of powders with different particle size ratios based on discrete element[J]. Powder Metallurgy Technology, 2021, 39(6): 490-498. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120014
    [3]WANG Guang-da, LI Qiang, Dong Jian-ying, XIONG Ning, LIU Guo-hui. Fabrication of large size and high relative density tungsten tube[J]. Powder Metallurgy Technology, 2021, 39(3): 263-268. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030001
    [4]SHEN Xiao-ping, HUANG Yong-qiang. Optimization of powder net-shape compacting technology and structural design of 3D complex parts by numerical simulation[J]. Powder Metallurgy Technology, 2019, 37(4): 298-305. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.010
    [5]Xu Junli, Jia Chengchang, He Xinbo, Qu Xuanhui, Han Yong. Influence of injection parameters on size and density of green body in powder injection molding[J]. Powder Metallurgy Technology, 2010, 28(5): 376-380.
    [6]Meng Zhenghua, Huang Shangyu, Zhou Jing, Sun Wei. Effect of voltage of powder low-voltage electromagnetic compaction on the density of TiO_2 ceramics[J]. Powder Metallurgy Technology, 2010, 28(1): 48-52.
    [7]Yan Jianhui, Zhang Houan, Li Yimin. Effects of relative density on oxidation behaviors of MoSi2 at high temperature[J]. Powder Metallurgy Technology, 2006, 24(6): 403-406,411. DOI: 10.3321/j.issn:1001-3784.2006.06.001
    [8]Li Mingyi, Guo Shiju, Lin Tao, Kang Zhijun. THE INFLUENCE OF CHARACTERISTICS OF IRON POWDERS ON WARM-COMPACTED DENSITY[J]. Powder Metallurgy Technology, 2000, 18(3): 172-177.
    [9]Zhang Maicang, Feng Jianpeng, Luo Zijian, Ceng Fanchang. EVOLUTION LAW OF GEOMETRICAL DIMENSIONS AND RELATIVE DENSITY FOR P/M SUPERALLOYS DURING HOT ISOSTATIC PRESSING[J]. Powder Metallurgy Technology, 1999, 17(1): 19-23.
    [10]Lu Liguo. INFLUENCE OF AVERAGE PARTICLE SIZE OF TUNGSTEN-ALUMINIUM POWDER ON DENSITY OF SINTERED BAR[J]. Powder Metallurgy Technology, 1995, 13(1): 31-33.
  • Cited by

    Periodical cited type(1)

    1. 赵硕,于爱兵,何源,王燕琳,迟剑英. 银基钎料中添加剂对PCD刀具钎焊剪切强度的影响. 热加工工艺. 2020(17): 11-14 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (201) PDF downloads (13) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return