AdvancedSearch
SHEN Xiao-ping, HUANG Yong-qiang. Optimization of powder net-shape compacting technology and structural design of 3D complex parts by numerical simulation[J]. Powder Metallurgy Technology, 2019, 37(4): 298-305. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.010
Citation: SHEN Xiao-ping, HUANG Yong-qiang. Optimization of powder net-shape compacting technology and structural design of 3D complex parts by numerical simulation[J]. Powder Metallurgy Technology, 2019, 37(4): 298-305. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.010

Optimization of powder net-shape compacting technology and structural design of 3D complex parts by numerical simulation

More Information
  • Corresponding author:

    SHEN Xiao-ping, E-mail: xpshen171@163.com

  • Received Date: September 16, 2018
  • The optimization of powder net-shape compacting technology and the structural design of weight reduction gear were simulated by MSC.Marc software based on the finite element method (FEM). The reliability and accuracy of the proposed FEM model were validated by the experimental results. The influences of compacting mode, compacting speed, friction coefficient, compacting temperature, and dwell time on the relative density distribution of compaction were studied by the finite element software. In the result, the combined compacting process can effectively improve the density distribution of powders as double-action pressing + warm compacting + low compacting speed + small friction coefficient + pressure maintaining. The optimal structure of weight reduction gear was carried out by the proposed FEM model, the relationship between the height-diameter ratio of spur gear and the relative density of compaction was studied, and the optimum size of weight reducing hole was determined. The results show that, the density on the thin wall of the hole can be effectively improved by using the forced friction pressing mode instead of floating pressing mode. The structural mechanics of weight reduction gear was simulated by Workbench software, the force condition on the thin wall was analyzed to reach the strength requirements of gear.
  • [1]
    Wallner S, Hatzenbichler T, Buchmayr B. Implementation of yield functions in the FEM software DEFORM 3DTM to simulate the densification of PM materials. BHM Berg-Huttenmann Monatsh, 2008, 153(11): 435
    [2]
    Cante J C, Riera M D, Oliver J, et al. Flow regime analyses during the filling stage in powder metallurgy processes: experimental study and numerical modelling. Granular Matter, 2011, 13(1): 79
    [3]
    周照耀, 李元元. 金属粉末成形力学建模与计算机模拟. 广州: 华南理工大学出版社, 2011

    Zhou Z Y, Li Y Y. Mechanical Modeling and Computer Simulation of Metal Powder Forming. Guangzhou: South China University of Technology Press, 2011
    [4]
    Andersson D C, Lindskog P, Staf H, et al. A numerical study of material parameter sensitivity in the production of hard metal components using powder compaction. J Mater Eng Perform, 2014, 23(6): 2199 DOI: 10.1007/s11665-014-0989-5
    [5]
    白才艳, 何育嘉, 项涛涛, 等. 柴油机油量控制套筒粉末冶金成形技术的研究. 粉末冶金技术, 2015, 33(5): 365 DOI: 10.3969/j.issn.1001-3784.2015.05.010

    Bai C Y, He Y J, Xiang T T, et al. P/M forming technique for fuel control sleeve of diesel engine. Powder Metall Technol, 2015, 33(5): 365 DOI: 10.3969/j.issn.1001-3784.2015.05.010
    [6]
    Wikman B, Bergman G, Oldenburg M, et al. Estimation of constitutive parameters for powder pressing by inverse modelling. Struct Multi Optim, 2006, 31(5): 400
    [7]
    周作平, 申小平. 粉末冶金机械零件使用技术. 北京: 化学工业出版社, 2005

    Zhou Z P, Shen X P. Powder Metallurgy Machinery Parts and Practical Technology. Beijing: Chemical Industry Press, 2005
    [8]
    黄永强, 申小平, 潘诗琰, 等. 粉末热锻凸轮的数值模拟. 粉末冶金工业, 2016, 26(2): 50 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201602016.htm

    Huang Y Q, Shen X P, Pan S Y, et al. Numerical simulation of powder hot forging cam. Powder Metall Ind, 2016, 26(2): 50 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201602016.htm
    [9]
    Jung J M, Yoo J H, Jeong H J, et al. Three-dimensional characterization of SiC particle-reinforced Al composites using serial sectioning tomography and thermo-mechanical finite element simulation. Metall Mater Trans A, 2014, 45(12): 5679
    [10]
    高锦张. 塑性成形工艺与模具设计. 北京: 机械工业出版社, 2001

    Gao J Z. Plastic Forming Process and Die Design. Beijing: China Machine Press, 2001
    [11]
    Ludwig R, Apelian D, Leuenberger G. An NDE methodology to predict density in green-state powder metallurgy compacts. J Nondestr Eval, 2005, 24(3): 109
    [12]
    申小平, 黄永强, 徐旭东. 柴油机油量控制套筒的模具优化设计. 粉末冶金材料科学与工程, 2016, 21(4): 618 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201604016.htm

    Shen X P, Huang Y Q, Xu X D. Optimization design of the mould for oil-quantity-controlling sleeve of diesel engine. Mater Sci Eng Powder Metall, 2016, 21(4): 618 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201604016.htm
    [13]
    Shofman L A. Dependence of the density of metal-powder compacts on compaction pressure. Sov Powder Metall Met Ceram, 1968, 7(8): 596
    [14]
    王德广, 吴玉程, 焦明华, 等. 不同压制工艺对粉末冶金制品性能影响的有限元模拟. 机械工程学报, 2008, 44(1): 205 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200801037.htm

    Wang D G, Wu Y C, Jiao M H, et al. Finite element simulation of influence of different compacting processes on powder metallurgic products properties. Chin J Mech Eng, 2008, 44(1): 205 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200801037.htm
    [15]
    孙露, 周春芳, 王惠亚, 等. 粉末热锻双层材料凸轮的显微组织与力学性能研究. 粉末冶金技术, 2017, 35(6): 403 DOI: 10.19591/j.cnki.cn11-1974/tf.2017.06.001

    Sun L, Zhou C F, Wang H Y, et al. Microstructure and mechanical properties of powder metallurgy forging bilayer cam. Powder Metall Technol, 2017, 35(6): 403 DOI: 10.19591/j.cnki.cn11-1974/tf.2017.06.001
    [16]
    方伟, 何新波, 张瑞杰, 等. 粉末注射成形充模过程中粉体分布的数值模拟. 粉末冶金材料科学与工程, 2013, 18(2): 149 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201302002.htm

    Fang W, He X B, Zhang R J, et al. Numerical simulation of powder volume fraction variation during powder injection molding filling flow process. Mater Sci Eng Powder Metall, 2013, 18(2): 149 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201302002.htm
    [17]
    Zadeh H K, Jeswiet J, Kim I Y. Improvement in robustness and computational efficiency of material models for finite element analysis of metal powder compaction and experiment validation. Int J Adv Manuf Technol, 2013, 68(5-8): 1785
    [18]
    尤萌萌, 潘诗琰, 申小平, 等. 粉末压制过程数值模拟的研究现状及展望. 粉末冶金工业, 2017, 27(4): 49 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201704015.htm

    You M M, Pan S Y, Shen X P, et al. Current progress and prospect of numerical simulation in powder compaction. Powder Metall Ind, 2017, 27(4): 49 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201704015.htm
  • Related Articles

    [1]ZHANG Xiuling, CHEN Yuhong, QI Wubin, ZHANG Qiang, HAI Wanxiu. Densification and physical properties of SiC-diamond polycrystalline materials produced by pressureless sintering[J]. Powder Metallurgy Technology, 2024, 42(2): 165-169, 176. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090009
    [2]WAN Lin, ZHANG Jifeng, SUN Lu, QIU Tianxu, SHEN Xiaoping. Effects of C and Cr contents on microstructure and physical properties of powder forged Fe–Cu–C–Cr alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 508-515. DOI: 10.19591/j.cnki.cn11-1974/tf.2020090001
    [3]ZHANG Chen-zeng, CHEN Cun-guang, LI Pei, LU Tian-xing, YANG Fang, GUO Zhi-meng. Microstructure and properties of Cu‒Fe alloys prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2022, 40(2): 139-144. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040009
    [4]CHEN Jin, XIONG Ning, GE Qi-lu, WANG Tie-jun, CAI Jing, LIU Gui-Rong. Fabrication and properties of large size aluminum-based boron carbide composites by hot isostatic pressing[J]. Powder Metallurgy Technology, 2020, 38(2): 132-137. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.008
    [5]ZHANG Bing-qing, WANG Qi, WANG Sui, WANG Hua-lei, JIANG Feng, SUN Jun. Study on the microstructure and properties of powder-forged gear materials[J]. Powder Metallurgy Technology, 2020, 38(2): 113-120. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.005
    [6]ZHANG Ren, WANG Xu-lei, HE Xin-bo. Effect of Cr coating on microstructure and properties of graphite flake/Cu composites[J]. Powder Metallurgy Technology, 2019, 37(4): 248-254. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.002
    [7]ZHOU Qiang, WEI Shi-chao, YANG Shu-zhong, LUO Li, CHANG De-min. Preparation of FeCuNiSnCo powder by mechanical alloying and the research on physical properties of its matrix material[J]. Powder Metallurgy Technology, 2019, 37(1): 30-35. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.005
    [8]NI Feng, FU Li-hua, DENG Pan, WU Peng-fei. Effects of SiO2-B2O3-Al2O3 scaling powder on microstructures and properties of Cu-C-SnO2 porous materials sintered by powders[J]. Powder Metallurgy Technology, 2018, 36(5): 335-341. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.05.003
    [9]LIU Gui-min, DU Lin-fei, YAN Tao, ZHU Shuo, HUI Yang. Effect of rare earth Ce on the microstructure and properties of Cu-Al2O3 composites[J]. Powder Metallurgy Technology, 2018, 36(3): 196-200, 216. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.006
    [10]Thermophysical Properties of ZrCp/W Composites Prepared by Hot-pressing[J]. Powder Metallurgy Technology, 2002, 20(5): 263-266. DOI: 10.3321/j.issn:1001-3784.2002.05.001
  • Cited by

    Periodical cited type(17)

    1. 蔡锦文,冯可芹,王海波,刘艳芳,陈思潭. 表面修饰石墨烯制备工艺及其在金属材料中的应用研究. 材料导报. 2024(01): 158-163 .
    2. 陈施润,陈文革,钱颖,张辉. 稀土铈改性石墨烯/水性环氧树脂复合涂料涂装技术研究. 中国腐蚀与防护学报. 2024(01): 107-118 .
    3. 张可萌,柳培,王杰,侯博,刘振伟,高岩. Cu-(石墨烯/6063Al)复合材料的设计制备及组织性能研究. 粉末冶金工业. 2024(02): 75-80 .
    4. 冯俊俊,张会,李亚鹏,段瑾瑜,刘禹,蒲卓林. 石墨烯负载铜增强铜基块体复合材料的制备及其性能. 复合材料学报. 2023(01): 485-498 .
    5. 施琴,朱和军. 银包覆过渡族金属硒化物的制备及银基复合材料性能. 粉末冶金技术. 2023(06): 536-542 . 本站查看
    6. 陈华强,陶应啟,李晓静,吴云洪,王吉应,叶墨稼,余贤旺. 化学气相沉积法及机械混合法添加石墨烯对铜铬触头性能的影响. 功能材料. 2023(12): 12148-12153+12162 .
    7. 陈伟光,刘娟. 添加剂对传感器用PCB环氧树脂板真空蒸镀铜层参数优化及结构的影响. 材料保护. 2022(01): 159-164 .
    8. 李慧莹,王玄玉,孙淑宝,刘志龙,董文杰. 镀镍石墨烯制备及红外干扰性能. 含能材料. 2022(12): 1213-1218 .
    9. 文国富,梁艳娟,王秀飞,伊春强,尹彩流,蒙洁丽. 球磨参数对石墨烯增强铜基复合材料性能的影响. 润滑与密封. 2021(01): 103-110 .
    10. 马强,王健,韦琪龙,路承功,魏智强. 碳包覆CdS纳米颗粒的光学性能研究. 粉末冶金技术. 2021(01): 54-61 . 本站查看
    11. 梁燕,王献辉,李航宇,倪菁艺,金千贺. 石墨烯增强铜基复合材料的制备及研究现状. 稀有金属材料与工程. 2021(07): 2607-2619 .
    12. 施琴,朱和军. 银/石墨烯复合润滑添加剂对于润滑油摩擦性能的影响. 粉末冶金技术. 2020(04): 257-261+274 . 本站查看
    13. 赵敬,彭倚天. 石墨烯表面化学镀铜及铜/石墨烯复合材料的性能研究. 电镀与涂饰. 2020(21): 1481-1485 .
    14. 冯孟奇,贾淑果,李韶林,宋克兴,国秀花,张祥峰,林焕然. 铜/碳复合材料的研究进展. 材料热处理学报. 2020(12): 25-36 .
    15. 刘宇宁,彭冬冬,张辉,甘春雷. 烧结压力对石墨烯增强铜基复合材料组织性能的影响. 功能材料. 2019(01): 1183-1187+1191 .
    16. 郭申申,凤仪,赵浩,钱刚,张学斌. 石墨烯增强铜基复合材料的制备及其微观组织与性能研究. 金属功能材料. 2019(04): 16-22 .
    17. 巩正奇,王灿明,崔洪芝,张文娅. 石墨烯对激光熔覆镍基碳化钨涂层组织及性能影响. 粉末冶金技术. 2019(05): 323-331 . 本站查看

    Other cited types(8)

Catalog

    Article Metrics

    Article views (460) PDF downloads (54) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return