AdvancedSearch
HUANG Zhao-xuan, LAN Jiang, YANG Shi-yu, QIU Tian-xu, SHEN Xiao-ping. Effect of MoS2 and graphite on friction properties of bronze oil bearing[J]. Powder Metallurgy Technology, 2020, 38(5): 363-370. DOI: 10.19591/j.cnki.cn11-1974/tf.2019060005
Citation: HUANG Zhao-xuan, LAN Jiang, YANG Shi-yu, QIU Tian-xu, SHEN Xiao-ping. Effect of MoS2 and graphite on friction properties of bronze oil bearing[J]. Powder Metallurgy Technology, 2020, 38(5): 363-370. DOI: 10.19591/j.cnki.cn11-1974/tf.2019060005

Effect of MoS2 and graphite on friction properties of bronze oil bearing

More Information
  • Corresponding author:

    SHEN Xiao-ping, E-mail: xpshen171@163.com

  • Received Date: June 23, 2019
  • By changing the contents of MoS2 (mass fraction 1.0%~2.0%) and graphite (mass fraction 0~1.0%), the bearing pressure limit value of bronze oil bearing at the certain sliding linear velocity was measured, the effects of MoS2 and graphite contents on the mechanical and frictional properties of bronze oil bearing were studied. The results show that, the limit value of load×linear velocity (pv) for the oil bearings decreases with the increase of MoS2 content without graphite addition, and the bronze-1MoS2 (1.0%MoS2, mass fraction) oil bearing has the highest pv value of 2.940 MPa·m·s-1. In the case of adding graphite and MoS2 at the same time, the friction coefficient of the oil bearing decreases with the increase of the graphite content, and the bronze-1MoS2-1graphite (1.0%MoS2 and 1.0%graphite, mass fraction) oil bearing has the lowest friction coefficient of 0.038. Graphite can improve the friction properties of oil bearings, but it may greatly reduce the mechanical properties of oil bearings.
  • [1]
    韩凤麟. 粉末冶金机械零件. 粉末冶金技术, 2016, 34(2): 155 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ802.008.htm

    Han F L. Powder metallurgy machinery parts. Powder Metall Technol, 2016, 34(2): 155 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ802.008.htm
    [2]
    申小平. 粉末冶金制造工程. 北京: 国防工业出版社, 2015

    Shen X P. Powder Metallurgy Manufacturing Engineering. Beijing: National Defense Industry Press, 2015
    [3]
    渡边侊尚, 韩凤麟. 烧结含油轴承. 粉末冶金技术, 2002, 20(3): 121 DOI: 10.3321/j.issn:1001-3784.2002.03.001

    Teruhisa W, Han F L. Porous sintered bearings. Powder Metall Technol, 2002, 20(3): 121 DOI: 10.3321/j.issn:1001-3784.2002.03.001
    [4]
    段家欢. 浅析粉末冶金材料及冶金技术发展. 世界有色金属, 2018(15): 16 DOI: 10.3969/j.issn.1002-5065.2018.15.010

    Duan J H. Development of powder metallurgy materials and metallurgical technology. World Nonferrous Met, 2018(15): 16 DOI: 10.3969/j.issn.1002-5065.2018.15.010
    [5]
    鲁乃光. 烧结金属摩擦材料现状与发展动态. 粉末冶金技术, 2002, 20(5): 294 DOI: 10.3321/j.issn:1001-3784.2002.05.008

    Lu N G. The present state and tendency of sintered friction materials in the world. Powder Metall Technol, 2002, 20(5): 294 DOI: 10.3321/j.issn:1001-3784.2002.05.008
    [6]
    杜明. 石墨及镀铜石墨–铜基复合材料摩擦学性能研究[学位论文]. 长春: 长春工业大学, 2018

    Du M. Study on Tribological Properties of Graphite and Copper Coated Graphite-Copper Composites Materials [Dissertation]. Changchun: Changchun University of Technology, 2018
    [7]
    孙永安, 张玲, 李县辉, 等. 高速自润滑含油轴承的研究. 粉末冶金技术, 2002, 20(2): 90 DOI: 10.3321/j.issn:1001-3784.2002.02.007

    Sun Y A, Zhang L, Li X H, et al. Study about high-speed self-lubricating oil-containing bearing. Powder Metall Technol, 2002, 20(2): 90 DOI: 10.3321/j.issn:1001-3784.2002.02.007
    [8]
    周青伟. 二硫化钼及其复合材料的制备与性能研究[学位论文]. 南京: 南京大学, 2019

    Zhou Q W. The Preparation and Property Study of Nanomaterials Based on Molybdenum Disulfide [Dissertation]. Nanjing: Nanjing University, 2019
    [9]
    石淼森. 固体润滑材料. 北京: 化学工业出版社, 2000

    Shi M S. Solid Lubricating Materials. Beijing: Chemical Industry Press, 2000
    [10]
    晏浩洋. 固体润滑技术的原理与应用. 技术与市场, 2016, 23(11): 133 DOI: 10.3969/j.issn.1006-8554.2016.11.099

    Yan H Y. Principle and application of solid lubrication technology. Technol Market, 2016, 23(11): 133 DOI: 10.3969/j.issn.1006-8554.2016.11.099
    [11]
    杨茜婷. 银–石墨–二硫化钼复合材料的摩擦磨损性能研究[学位论文]. 合肥: 合肥工业大学, 2010

    Yang Q T. Study on Friction and Wear Properties of AgGMoS2 [Dissertation]. Hefei: Hefei University of Technology, 2010
    [12]
    崔中涛. 石墨–二硫化钼涂层摩擦学性能及其在深沟球轴承上的应用研究[学位论文]. 重庆: 重庆大学, 2018

    Cui Z T. Tribological Properties of Graphite–MoS2 Coating and Its Application in Deep Groove Ball Bearings[Dissertation]. Chongqing: Chongqing University, 2018
    [13]
    杨承璋. 二硫化钼涂层摩擦学性能及其在TBA轴承上的应用[学位论文]. 重庆: 重庆大学, 2018

    Yang C Z. Tribological Properties of MoS2 Coating and Its Application in TBA Bearing[Dissertation]. Chongqing: Chongqing University, 2018
    [14]
    陈淑娴. 铜–二硫化钼复合材料的制备及其组织与性能研究[学位论文]. 合肥: 合肥工业大学, 2009

    Chen S X. The Study of Preparation, Microstructure and Properties of Cu–MoS2 Composites [Dissertation]. Hefei: Hefei University of Technology, 2009
    [15]
    张银娣. 自润滑Cu/Cu–MoS2复合材料的制备及性能研究[学位论文]. 洛阳: 河南科技大学, 2014

    Zhang Y D. Preparation and Properties of Cu/Cu–MoS2 Self-lubricating Composite [Dissertation]. Luoyang: Henan University of Science and Technology, 2014
    [16]
    牛淑琴, 阮虎生, 朱家佩, 等. 青铜–石墨系含油自润滑复合材料的研究与应用. 摩擦学学报, 1992, 12(4): 335 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX199204005.htm

    Niu S Q, Ruan H S, Zhu J P, et al. The study and application of bronze-graphite oil-containing self-lubricating composites. Tribology, 1992, 12(4): 335 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX199204005.htm
    [17]
    陈锐. 石墨材料与石墨轴承. 炭素, 2001(4): 32 DOI: 10.3969/j.issn.1001-8948.2001.04.005

    Chen R. Graphite-material and graphite-bearing. Carbon, 2001(4): 32 DOI: 10.3969/j.issn.1001-8948.2001.04.005
    [18]
    张铭君, 朱世伟, 于俊凤, 等. 石墨/铜基复合材料研究进展. 铸造技术, 2017, 38(11): 2565 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201711002.htm

    Zhang M J, Zhu S W, Yu J F, et al. Development of graphite/copper matrix composites. Foundry Technol, 2017, 38(11): 2565 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201711002.htm
    [19]
    张蒙蒙, 谢凤, 李斌, 等. 金属硫化物固体润滑剂简介. 合成润滑材料, 2015, 42(3): 27 DOI: 10.3969/j.issn.1672-4364.2015.03.010

    Zhang M M, Xie F, Li B, et al. Introduction of metallic sulfide solid lubricants in brief. Synth Lubric, 2015, 42(3): 27 DOI: 10.3969/j.issn.1672-4364.2015.03.010
  • Related Articles

    [1]LI Yue, ZHAO Dingguo, SU Xinlei, LIU Yan, WANG Shuhuan. Viscosity model of CoCrFeMnNi high entropy alloys[J]. Powder Metallurgy Technology, 2024, 42(4): 411-417. DOI: 10.19591/j.cnki.cn11-1974/tf.2022080008
    [2]LIU Ganhua, TANG Naifu, WANG Qi. Accurate modeling of equal-distance spiral bevel gear and the trial production by metal powder injection molding process[J]. Powder Metallurgy Technology, 2024, 42(2): 207-214. DOI: 10.19591/j.cnki.cn11-1974/tf.2021100012
    [3]SUN Shi-min, HUANG Shang-yu, ZHOU Meng-cheng, LEI Yu, WANG Bin. Modified Drucker-Prager Cap model of Ti-6Al-4V powders for cold die compaction[J]. Powder Metallurgy Technology, 2018, 36(4): 261-269. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.04.004
    [4]Dai Yu, Huang Baiyun, Liu Yong, Yang Jiangao. Mathematical model and analysis of atomization process with lineal instability[J]. Powder Metallurgy Technology, 2009, 27(5): 331-335.
    [5]Research on Sintering Model of ZAO Ceramics[J]. Powder Metallurgy Technology, 2002, 20(5): 267-270. DOI: 10.3321/j.issn:1001-3784.2002.05.002
    [6]Sun Jianfei, Shen Jun, Li Zhenyu, Jia Jun, Li Qingchun. HEAT TRANSFER AND SOLIDIFICATION BEHAVIOR OF SUPERALLOY DROPLETS DURING SPRAY FORMING[J]. Powder Metallurgy Technology, 2000, 18(2): 92-97.
    [7]Cheng Yuanfang, Guo Shiju, Lai Heyi. COUPLING MODEL OF MULTIPLE SINTERING MECHANISMS FOR THE INITIAL STAGE SINTERING[J]. Powder Metallurgy Technology, 1999, 17(4): 257-263.
    [8]Cheng Yuanfang, Guo Shiju, Lai Heyi. THEORETICAL MODELLING PROGRESS——1.THE COMPARISON OF THE UNIT MODEL FOR THE FIRST STAGE OF GRAVITY SINTERING[J]. Powder Metallurgy Technology, 1999, 17(3): 216-221.
    [9]Yang Liushuan, Pang Lijun, Liu Yongzhang, Yang Gencang, Zhou Yaohe. PHYSICAL MODEL AND MATHEMATICAL ANALYSES ON THERMAL PROCESS OF SPRAY-DEPOSITED ZA27 ALLOY DROPLETS[J]. Powder Metallurgy Technology, 1995, 13(3): 163-169.
    [10]Zhang Ji, Li Shikui. MATHEMATICAL ANALYSIS ON TRANSVERSE RUPTURE STRENGTH OF YG15 HARDMETALS[J]. Powder Metallurgy Technology, 1993, 11(1): 15-18.
  • Cited by

    Periodical cited type(1)

    1. 崔雷,麻洪秋,赵刚,孟令兵,关立东,冯雪峰. 改进型组合雾化工艺制备球形FeSiCr粉末. 粉末冶金技术. 2024(05): 481-488 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return