AdvancedSearch
ZHANG Xiang, PAN Xiao-qiang, LU Yong-hong, ZHANG Rui-qian. Preparation and research progress of accident tolerant fuel pellets[J]. Powder Metallurgy Technology, 2022, 40(4): 334-339. DOI: 10.19591/j.cnki.cn11-1974/tf.2020030006
Citation: ZHANG Xiang, PAN Xiao-qiang, LU Yong-hong, ZHANG Rui-qian. Preparation and research progress of accident tolerant fuel pellets[J]. Powder Metallurgy Technology, 2022, 40(4): 334-339. DOI: 10.19591/j.cnki.cn11-1974/tf.2020030006

Preparation and research progress of accident tolerant fuel pellets

More Information
  • Corresponding author:

    ZHANG Xiang, E-mail: xiangnpic@163.com

  • Received Date: May 05, 2020
  • Accepted Date: May 05, 2020
  • Available Online: April 17, 2022
  • After the Fukushima nuclear accident, the accident tolerant fuel (ATF) is developed to improve the ability of nuclear fuel components to resist the serious accidents and becomes the hot research topic in the nuclear industry. The enhanced thermal conductivity UO2 pellets represented by BeO and SiC doping, high uranium density and high thermal conductivity fuel pellets, and fully ceramic microencapsulated fuel pellets were reviewed in this paper. The advantage characteristics, thermal conductivity, preparation process, and research progress of the accident resistant fuel pellets were introduced. The problems and application prospects of the accident resistant fuel pellets were focused and prospected to provide the reference for the study of the accident tolerant fuel pellets.

  • [1]
    Carmack J. Accident tolerant fuel development program. Nucl Plant J, 2014, 32(1): 46
    [2]
    Terrani K A. Accident tolerant fuel cladding development: Promise, status, and challenges. J Nucl Mater, 2018, 501(4): 13
    [3]
    Zhou W Z, Liu R, Revankar S T. Fabrication methods and thermal hydraulics analysis of enhanced thermal conductivity UO2–BeO fuel in light water reactors. Ann Nucl Eng, 2015, 81(1): 240
    [4]
    Revankar S T, Zhou W Z, Chandramouli D. Thermal performance of UO2–BeO fuel during a loss of coolant accident. Int J Nucl Energy Sci Eng, 2015, 5: 1 DOI: 10.14355/ijnese.2015.05.001
    [5]
    McDeavitt S, Ragusa J, Revankar S T, et al. A high-conductivity oxide fuel concept. Nucl Eng Int, 2011, 56(682): 40
    [6]
    Latta R, Revankar S T, Solomon A A. Modeling and measurement of thermal properties of ceramic composite fuel for light water reactors. Heat Transfer Eng, 2008, 29(4): 357 DOI: 10.1080/01457630701825390
    [7]
    Solomon A A, Revankar S, Areva J K M. Enhanced thermal conductivity oxide fuels. U. S. Department of Energy Office of Scientific and Technical Information (2006-01-17) [2020-03-10]. https://www.osti.gov/servlets/purl/862369
    [8]
    Li B Q, Yang Z L, Jia J P, et al. High temperature thermal physical performance of BeO/UO2 composites prepared by spark plasma sintering (SPS). Scr Mater, 2018, 142: 70 DOI: 10.1016/j.scriptamat.2017.08.031
    [9]
    Yeo S, Mckenna E, Baney R, et al. Fabrication strategies and thermal conductivity assessment of high density UO2 Pellet incorporated with SiC. Mater Res Soc Symp Proc, 2012, 1444: 9
    [10]
    Yeo S, Mckenna E, Baney R, et al. Enhanced thermal conductivity of uranium dioxide–silicon carbide composite fuel pellets prepared by spark plasma sintering (SPS). J Nucl Mater, 2013, 433: 66 DOI: 10.1016/j.jnucmat.2012.09.015
    [11]
    Ge L H, Subhash G, Baney R H, et al. Densification of uranium dioxide fuel pellets prepared by spark plasma sintering (SPS). J Nucl Mater, 2013, 435(1-3): 1 DOI: 10.1016/j.jnucmat.2012.12.010
    [12]
    Yeo S, Baney R, Subhash G, et al. The influence of SiC particle size and volume fraction on the thermal conductivity of spark plasma sintered UO2–SiC composites. J Nucl Mater, 2013, 442: 245 DOI: 10.1016/j.jnucmat.2013.09.003
    [13]
    Li B Q, Yang Z L, Jia J P, et al. High temperature thermal physical performance of SiC/UO2 composites up to 1600 ℃. Ceram Int, 2018, 44: 10069 DOI: 10.1016/j.ceramint.2018.02.208
    [14]
    Cappia F, Harp J M, McCoy K. Post-irradiation examinations of UO2 composites as part of the accident tolerant fuels campaign. J Nucl Mater, 2019, 517: 97 DOI: 10.1016/j.jnucmat.2019.01.050
    [15]
    Middleburgh S C, Claisse A, Andersson D A, et al. Solution of hydrogen in accident tolerant fuel candidate material: U3Si2. J Nucl Mater, 2018, 501: 234 DOI: 10.1016/j.jnucmat.2018.01.018
    [16]
    Harp J M, Lessing P A, Hoggan R E. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation. J Nucl Mater, 2015, 466: 728 DOI: 10.1016/j.jnucmat.2015.06.027
    [17]
    White J T, Nelson A T, Dunwoody J T, et al. Thermophysical properties of U3Si2 to 1773 K. J Nucl Mater, 2015, 464: 275 DOI: 10.1016/j.jnucmat.2015.04.031
    [18]
    Mcclellan K J. FY2015 ceramic fuels development annual highlights. U. S. Department of Energy Office of Scientific and Technical Information (2015-09-22) [2020-03-10]. https://www.osti.gov/servlets/purl/1215812.
    [19]
    张翔, 刘桂良, 刘云明, 等. U3Si2燃料芯块的制备与显微组织研究. 核动力工程, 2019, 40(1): 56

    Zhang X, Liu G L, Liu Y M, et al. Study on fabrication and microstructural analysis of U3Si2 fuel pellets. Nucl Power Eng, 2019, 40(1): 56
    [20]
    Cappia F, Harp J M. Postirradiation examinations of low burnup U3Si2 fuel for light water reactor applications. J Nucl Mater, 2019, 518: 62 DOI: 10.1016/j.jnucmat.2019.02.047
    [21]
    White J T, Travis A W, Dunwoody J T, et al. Fabrication and thermophysical property characterization of UN/U3Si2 composite fuel forms. J Nucl Mater, 2017, 495: 463 DOI: 10.1016/j.jnucmat.2017.08.041
    [22]
    Terrani K A, Kiggans J O, Katoh Y, et al. Fabrication and characterization of fully ceramic microencapsulated fuels. J Nucl Mater, 2012, 426(1-3): 268 DOI: 10.1016/j.jnucmat.2012.03.049
    [23]
    Terrani K A, Trammell M P, Kiggans J O, et al. UN TRISO compaction in SiC for FCM fuel irradiations. U. S. Department of Energy Office of Scientific and Technical Information (2016-11-01) [2020-03-10]. https://www.osti.gov/servlets/purl/1335363
    [24]
    Morris R N, Pappano P J. Estimation of maximum coated particle fuel compact packing fraction. J Nucl Mater, 2007, 361: 18 DOI: 10.1016/j.jnucmat.2006.10.017
    [25]
    Lee H G, Kim D, Lee S J, et al. Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites. Nucl Eng Des, 2017, 311: 9 DOI: 10.1016/j.nucengdes.2016.11.005
  • Related Articles

    [1]CHEN Bing-wei, YANG Xue-feng, ZHU Zhen-dong, LI Zheng-xin. Surface morphology characterization of diamond etched by CeO2[J]. Powder Metallurgy Technology, 2022, 40(4): 318-324. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090018
    [2]LIN Bing-tao, HE Jun, LIU Zhong-wei, WANG Cheng-yang, LI Ming, SUN Xiao-xia, ZHOU Shu-qiu. Fracture morphology and microstructure analysis of Mo–La nozzles for solid rocket motor[J]. Powder Metallurgy Technology, 2022, 40(1): 80-85. DOI: 10.19591/j.cnki.cn11-1974/tf.2021070003
    [3]YANG Wen-tao, XUE Bing, DAI Yong-fu, PU Chuan-jin, XIAO Ding-jun. Effect of milling time on the particle size distribution and morphology of tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(5): 423-428. DOI: 10.19591/j.cnki.cn11-1974/tf.2020020010
    [4]SI Jia-jia, SU Xiao-lei. Preparation of ultrafine spherical nickel powders[J]. Powder Metallurgy Technology, 2021, 39(2): 177-183. DOI: 10.19591/j.cnki.cn11-1974/tf.2019090003
    [5]SUN Tian-hao, HAO Su-ju, JIANG Wu-feng, ZHANG Yu-zhu. Preparation and morphology analysis of nano-sized iron oxide[J]. Powder Metallurgy Technology, 2021, 39(1): 76-80. DOI: 10.19591/j.cnki.cn11-1974/tf.2019080008
    [6]ZHANG Bao-hong, TANG Liang-liang. Study on the erosion morphology of W-Ni-Sr electrode[J]. Powder Metallurgy Technology, 2020, 38(4): 289-294. DOI: 10.19591/j.cnki.cn11-1974/tf.2019050007
    [7]LUO Xiao-qiang, HAN Yong-jun, FENG Yun-xiao, YU Hao, YU Chun-bo, ZHAO Li-heng. Effect of bucket temperature on grain morphology of semi-solid melt A356 by micro fused-casting[J]. Powder Metallurgy Technology, 2019, 37(3): 170-174. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.002
    [8]Hydrothermal synthesis of micro-copper powders with special morphology[J]. Powder Metallurgy Technology, 2010, 28(3): 200-203.
    [9]Du Huiling, Wang Jianzhong, Chen Danfeng, Cang Daqiang. Effects of pulsed electromagnetic field on morphology of cobalt oxalate powders[J]. Powder Metallurgy Technology, 2010, 28(2): 96-100.
    [10]Xu Tianhan, Wang Danghui. Effect of inner diameter of delivery tube end of atomizer on morphology and size distribution of free-lead solder powder[J]. Powder Metallurgy Technology, 2009, 27(3): 197-202.
  • Cited by

    Periodical cited type(5)

    1. 王哲昊,吕绪明. 等离子喷涂技术在工程陶瓷涂层制备中的应用现状及展望. 材料导报. 2024(11): 52-61 .
    2. 陈开旺,张鹏林,李树旺,牛显明,胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能. 材料研究学报. 2023(01): 39-46 .
    3. 张一帆,王曲,王刚,刘鹏程,张琪,司瑶晨. 黏结剂种类对铝酸镧涂层材料性能的影响. 耐火材料. 2022(02): 123-126 .
    4. 张志辉,李明. 316L钢表面超音速火焰喷涂Fe基粉末涂层显微结构及摩擦性能分析. 粉末冶金技术. 2022(04): 351-355+361 . 本站查看
    5. 蔡浩,龚关,梁雅琪,仇秀梅,刘可. 莫来石在醇基铸造涂料中的试验研究. 中国新技术新产品. 2022(21): 26-28+145 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return