Citation: | CHEN Lijia, CHEN Haibin. Preparation of Ni coatings on zirconia balls by mechanical coating technology[J]. Powder Metallurgy Technology, 2023, 41(2): 181-186. DOI: 10.19591/j.cnki.cn11-1974/tf.2020040003 |
To investigate the influence of rotation speed and milling time on the formation of nickel (Ni) coatings prepared by mechanical coating technique (MCT), the Ni metal powders and the zirconia (ZrO2) ceramic balls were used as the coating materials and the substrates to fabricate the Ni coatings. The thickness of the coatings was characterized by the weight increase of the ZrO2 balls after the coating operation, and the microstructure and composition of the coatings were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). In the results, with the increase of rotational speed, the coatings thickness increases at the initial stage of ball milling and decreases at the later stage. The coatings thickness reaches the maximum (20 μm) when the rotation speed is 240 r∙min‒1 for 15 h. The formation of Ni coatings consists of two stages as thickening and thinning, which is affected by the rotation speed. The higher rotation speed is favor of the coatings formation and improves the processing efficiency, while the excessively speed will accelerate the coatings to peel off from the substrate, which is unfavorable to the formation of the coatings.
[1] |
Farahbakhsh I, Zakeri A, Manikandan P, et al. Effect of mechanical alloying parameters on the formation of Ni–Cu solid solution coating on the Ni balls. Jpn J Appl Phys, 2011, 50(1S2): 01BE06 DOI: 10.1143/JJAP.50.01BJ06
|
[2] |
陈立甲, 查五生, 吴开霞, 等. 机械球磨方法在表面薄膜涂层制备中的应用. 粉末冶金技术, 2014, 32(1): 64 DOI: 10.3969/j.issn.1001-3784.2014.01.012
Chen L J, Zha W S, Wu K X, et al. Application of mechanical milling in fabrication of surface coatings. Powder Metall Technol, 2014, 32(1): 64 DOI: 10.3969/j.issn.1001-3784.2014.01.012
|
[3] |
张桂银, 查五生, 陈秀丽, 等. 机械球磨技术在材料制备中的应用. 粉末冶金技术, 2018, 36(4): 315 DOI: 10.19591/j.cnki.cn11-1974/tf.2018.04.013
Zhang G Y, Zha W S, Chen X L, et al. Application of mechanical ball-milling technology in material preparation. Powder Metall Technol, 2018, 36(4): 315 DOI: 10.19591/j.cnki.cn11-1974/tf.2018.04.013
|
[4] |
齐宝森, 王志, 徐英, 等. 机械合金化制备磨球表面铬铝合金涂层. 金属热处理, 2005, 30(4): 59 DOI: 10.3969/j.issn.0254-6051.2005.04.018
Qi B S, Wang Z, Xu Y, et al. The Cr‒Al alloy coating on grinding balls surface by mechanical alloying. Heat Treat Met, 2005, 30(4): 59 DOI: 10.3969/j.issn.0254-6051.2005.04.018
|
[5] |
Farahbakhsh I, Zakeri A, Manikandan P, et al. Evaluation of nanostructured coating layers formed on Ni balls during mechanical alloying of Cu powder. Appl Surf Sci, 2011, 257(7): 2830 DOI: 10.1016/j.apsusc.2010.10.071
|
[6] |
段翠媛. 机械合金化制备高氮不锈钢及高氮不锈钢涂层的研究[学位论文]. 南京: 南京航空航天大学, 2016
Duan C Y. Investigation on Preparation of High Nitrogen Stainless Steels and High Stainless Steel Coatings by Mechanical Alloying [Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016
|
[7] |
Yoshida H, Lu Y, Nakayama H, et al. Fabrication of TiO2 film by mechanical coating technique and its photocatalytic activity. J Alloys Compd, 2009, 475(1): 383
|
[8] |
Lu Y, Hao L, Toh K, et al. Fabrication of TiO2/Cu composite photocatalyst thin film by 2-step mechanical coating technique and its photocatalytic activity. Adv Mater Res, 2012, 415: 1942
|
[9] |
Lu Y, Guan S J, Hao L, et al. Review on the photocatalyst coatings of TiO2: Fabrication by mechanical coating technique and its application. Coatings, 2015, 5(3): 425 DOI: 10.3390/coatings5030425
|
[10] |
Hao L, Lu Y, Asanuma H, et al. The influence of the processing parameters on the formation of iron thin films on alumina balls by mechanical coating technique. J Mater Process Technol, 2012, 212(5): 1169 DOI: 10.1016/j.jmatprotec.2012.01.001
|
[11] |
Hao L, Lu Y, Sato H, et al. Fabrication of zinc coatings on alumina balls from zinc powder by mechanical coating technique and the process analysis. Powder Technol, 2012, 228: 377 DOI: 10.1016/j.powtec.2012.05.056
|
[12] |
刘艳花, 叶姣凤, 张红霞, 等. Ni改性TiO2光催化性能研究进展. 中国资源综合利用, 2012, 30(10): 40 DOI: 10.3969/j.issn.1008-9500.2012.10.022
Liu Y H, Ye J F, Zhang H X, et al. Research progress on photocatalytic performance of TiO2 modified by nickel. China Resour Compr Util, 2012, 30(10): 40 DOI: 10.3969/j.issn.1008-9500.2012.10.022
|
[13] |
李大玉, 张文韬, 张超. 不同种类金属掺杂改性TiO2材料光催化性能的研究进展. 材料导报, 2019, 33(23): 3900 DOI: 10.11896/cldb.19020021
Li D Y, Zhang W T, Zhang C. Research progress in improving the photocatalytic properties of TiO2 materials by doping with different metals. Mater Rep, 2019, 33(23): 3900 DOI: 10.11896/cldb.19020021
|
[14] |
Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci, 2001, 46(1): 1
|
[15] |
Hao L, Lu Y, Sato H, et al. Influence of metal properties on the formation and evolution of metal coatings during mechanical coating. Metall Mater Trans A, 2013, 44A(6): 2717
|
[16] |
吴开霞, 查五生, 唐鑫鑫, 等. 氧化锆球体表面机械球磨涂覆钛涂层工艺研究. 粉末冶金技术, 2019, 37(6): 444 DOI: 10.19591/j.cnki.cn11-1974/tf.2019.06.007
Wu K X, Zha W S, Tang X X, et al. Study on the preparation process of Ti coatings on ZrO2 balls by mechanical milling coating technology. Powder Metall Technol, 2019, 37(6): 444 DOI: 10.19591/j.cnki.cn11-1974/tf.2019.06.007
|
[17] |
王磊, 侯利锋, 卫英慧, 等. 纯铜在表面机械研磨辅助下形成铝合金层的研究. 热加工工艺, 2013, 42(24): 161
Wang L, Hou L F, Wei Y H, et al. Investigation on Al alloy layer formation of pure copper surface subjected to surface mechanical attrition treatment. Hot Working Technol, 2013, 42(24): 161
|
[1] | LIU Guang-xu, WANG Xiao-feng, YANG Jie, ZOU Jin-wen. Effect of heat treatment on microstructure evolution and mechanical properties of P/M Ni-based superalloy at diffusion bonding interface[J]. Powder Metallurgy Technology, 2022, 40(3): 218-225. DOI: 10.19591/j.cnki.cn11–1974/tf.2021040006 |
[2] | XIAO Ping-an, ZHAO Ji-kang, GU Jing-hong, LÜ Rong, GU Si-min, CHEN Yu-xiang, CHEN Huan. Fabrication technology upgrade of TiC-based high manganese steel bonded cemented carbide[J]. Powder Metallurgy Technology, 2021, 39(6): 545-548. DOI: 10.19591/j.cnki.cn11-1974/tf.2020090010 |
[3] | YANG Jie, LIU Guang-xu, ZHANG Jing, WANG Wen-ying, WANG Xiao-feng, ZOU Jin-wen. Microstructure and failure mechanism of FGH96 solid-state diffusion bonding interface[J]. Powder Metallurgy Technology, 2021, 39(4): 311-318. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040005 |
[4] | Su Yixiang, Lei Yu, Xu Zhuang, Zhao Xiaoli, Guo Haifeng. Study on microstructure and properties of containing tellurium nickel-based alloy powder coating by non-vacuum fusion[J]. Powder Metallurgy Technology, 2013, 31(5): 323-327. DOI: 10.3969/j.issn.1001-3784.2013.05.001 |
[5] | Fan Anping, Xiao Ping'an, Li Chenkun, Xuan Cuihua, Qu Xuanhui. Research situation of TiC-based steel bonded carbide[J]. Powder Metallurgy Technology, 2013, 31(4): 298-303. DOI: 10.3969/j.issn.1001-3784.2013.04.011 |
[6] | Gong Wei, Li Hua, Zhu Yong. Effect of vanadium content on the microstructure and mechanical properties of (Ti,V)C35CrMo steel bonded carbide[J]. Powder Metallurgy Technology, 2009, 27(5): 336-340. |
[7] | Liu Junbo, Wang Limei, Liu Junhai, Huang Jihua. Influence of bonding phase on microstructure of steel bonded Himet synthesized in situ[J]. Powder Metallurgy Technology, 2007, 25(4): 266-270. |
[8] | Xiong Yongjun, Li Xibin, Liu Rutie, Zhao Fuan. Influences of high energy ball milling on microstructure and properties of a new steel bonded titanium carbide[J]. Powder Metallurgy Technology, 2006, 24(3): 187-191. DOI: 10.3321/j.issn:1001-3784.2006.03.006 |
[9] | Liu Junhai, Huang Jihua, Song Guixiang, Zhang Jiangang. A study on in situ reactive synthesis of TiC/heat resistant steel-steel bonded carbides[J]. Powder Metallurgy Technology, 2005, 23(3): 199-203. DOI: 10.3321/j.issn:1001-3784.2005.03.009 |
[10] | Wu Qiang, Hu Zhenhua, Xiao Jianzhong, Cui Kun. TEM RESEARCH ON MICROSTRUCTURES OF TiC-50Nb STEEL-BONDED CEMENTED CARBIDE[J]. Powder Metallurgy Technology, 1993, 11(3): 202-207. |