AdvancedSearch
ZHANG Yamin, WU Yaosha, YANG Junbao, ZENG Sihui. Preparation and properties of TiB2/AlSi10Mg composite powders used for selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(3): 234-240. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050012
Citation: ZHANG Yamin, WU Yaosha, YANG Junbao, ZENG Sihui. Preparation and properties of TiB2/AlSi10Mg composite powders used for selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(3): 234-240. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050012

Preparation and properties of TiB2/AlSi10Mg composite powders used for selective laser melting

More Information
  • Corresponding author:

    WU Yaosha, E-mail: 547656588@qq.com

  • Received Date: May 19, 2020
  • Accepted Date: May 19, 2020
  • Available Online: June 01, 2023
  • TiB2/AlSi10Mg composite powders used for selective laser melting were prepared by high-energy ball milling and plasma spheroidization, using the AlSi10Mg powders and high purity TiB2 powders as the raw materials prepared by gas atomization. The microstructure and properties of TiB2/AlSi10Mg composite powders before and after plasma spheroidization were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), laser particle size analyzer, and UV-visible spectrophotometer. The results show that the plasma spheroidization TiB2/AlSi10Mg composite powders have the excellent sphericity and the uniform particle size distribution. Moreover, the chemical reactions between TiB2 and Al may form the Al3Ti phases, which can obtain the metallurgical bonding interface and improve the bonding strength. The core-shell structure of the composite powders is similar to that of TiB2 coated with AlSi10Mg. The laser absorption rate of the powders is improved from 23.2% (AlSi10Mg) to 42.1% (TiB2/AlSi10Mg).

  • [1]
    Pandey U, Purohit R, Agarwal P, et al. Effect of TiC particles on the mechanical properties of aluminium alloy metal matrix composites (MMCs). Mater Today, 2017, 4: 5452 DOI: 10.1016/j.matpr.2017.05.057
    [2]
    王永慧, 胡强, 张金辉, 等. 激光选区熔化3D打印AlSi10Mg拉伸性能影响因素. 粉末冶金技术, 2022, 40(2): 152

    Wang Y H, Hu Q, Zhang J H, et al. Influencing factors on the tensile properties of selective laser melting 3D printing AlSi10Mg. Powder Metall Technol, 2022, 40(2): 152
    [3]
    Balcı Ö, Ağaoğulları D, Gökçe H, et al. Influence of TiB2 particle size on the microstructure and properties of Al matrix composites prepared via mechanical alloying and pressureless sintering. J Alloys Compd, 2014, 586: S78 DOI: 10.1016/j.jallcom.2013.03.007
    [4]
    Wei K W, Wang Z M, Zeng X Y. Preliminary investigation on selective laser melting of Ti–5Al–2.5Sn α-Ti alloy: From single tracks to bulk 3D components. J Mater Process Technol, 2017, 244: 73
    [5]
    Li H, Ramezani M, Chen Z, et al. Effects of process parameters on temperature and stress distributions during selective laser melting of Ti–6Al–4V. Trans Indian Inst Met, 2019, 72: 3201 DOI: 10.1007/s12666-019-01785-y
    [6]
    Sun Y, Bailey R, Moroz A. Surface finish and properties enhancement of selective laser melted 316L stainless steel by surface mechanical attrition treatment. Surface Coat Technol, 2019, 378: 124993 DOI: 10.1016/j.surfcoat.2019.124993
    [7]
    Huang M J, Zhang Z X, Chen P. Effect of selective laser melting process parameters on microstructure and mechanical properties of 316L stainless steel helical micro-diameter spring. Int J Adv Manuf Technol, 2019, 104: 2117 DOI: 10.1007/s00170-019-03928-3
    [8]
    Salman O O, Brenne F, Niendorf T, et al. Impact of the scanning strategy on the mechanical behavior of 316L steel synthesized by selective laser melting. J Manuf Proc, 2019, 45: 255 DOI: 10.1016/j.jmapro.2019.07.010
    [9]
    吴灵芝, 温耀杰, 张百成, 等. 选区激光熔化铝合金制备研究现状. 粉末冶金技术, 2021, 39(6): 549 DOI: 10.19591/j.cnki.cn11-1974/tf.2020040004

    Wu L Z, Wen Y J, Zhang B C, et al. Research status of selective laser melting aluminum alloys. Powder Metall Technology, 2021, 39(6): 549 DOI: 10.19591/j.cnki.cn11-1974/tf.2020040004
    [10]
    Sun S Y, Liu P, Hu J Y, et al. Effect of solid solution plus double aging on microstructural characterization of 7075 Al alloys fabricated by selective laser melting (SLM). Opt Laser Technol, 2019, 114: 158 DOI: 10.1016/j.optlastec.2019.02.006
    [11]
    Dai D H, Gu D D, Xia M J, et al. Melt spreading behavior, microstructure evolution and wear resistance of selective laser melting additive manufactured AlN/AlSi10Mg nanocomposite. Surf Coat Technol, 2018, 349: 279 DOI: 10.1016/j.surfcoat.2018.05.072
    [12]
    Xiong Z H, Liu S L, Li S F, et al. Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy. Mater Sci Eng:A, 2019, 740-741: 148 DOI: 10.1016/j.msea.2018.10.083
    [13]
    Gu X H, Zhang J X, Fan X L, et al. Abnormal corrosion behavior of selective laser melted AlSi10Mg alloy induced by heat treatment at 300 ℃. J Alloys Compd, 2019, 803: 314 DOI: 10.1016/j.jallcom.2019.06.274
    [14]
    Yu T Y, Hyer H, Sohn Y, et al. Structure-property relationship in high strength and lightweight AlSi10Mg microlattices fabricated by selective laser melting. Mater Des, 2019, 182: 108062 DOI: 10.1016/j.matdes.2019.108062
    [15]
    Teng X, Zhang G X, Zhao Y G, et al. Study on magnetic abrasive finishing of AlSi10Mg alloy prepared by selective laser melting. Int J Adv Manuf Technol, 2019, 105: 2513 DOI: 10.1007/s00170-019-04485-5
    [16]
    Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. J Mater Sci Technol, 2019, 35: 270 DOI: 10.1016/j.jmst.2018.09.004
    [17]
    Aboulkhair N T, Maskery I, Tuck C, et al. On the formation of AlSi10Mg single tracks and layers in selective laser melting: microstructure and nano-mechanical properties. J Mater Process Technol, 2016, 230: 88 DOI: 10.1016/j.jmatprotec.2015.11.016
    [18]
    Prashanth K G, Scudino S, Klauss H J, et al. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: effect of heat treatment. Mater Sci Eng: A, 2014, 590: 153 DOI: 10.1016/j.msea.2013.10.023
    [19]
    Yuan P P, Gu D D. Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments. J Phys D: Appl Phys, 2015, 48: 0353033
    [20]
    王小军, 王修春, 伊希斌, 等. 粉体特征对选区激光熔化Al–Si合金成型性能的影响. 山东科学, 2016, 29(2): 30 DOI: 10.3976/j.issn.1002-4026.2016.02.007

    Wang X J, Wang X C, Yi X B, et al. Impact of powder characteristics on formation properties of selective laser melted Al–Si alloy. Shandong Sci, 2016, 29(2): 30 DOI: 10.3976/j.issn.1002-4026.2016.02.007
    [21]
    梁加淼, 王利民, 何卫, 等. 球磨时间对纳米晶Al–7Si–0.3Mg合金粉末微观组织及硬度的影响. 粉末冶金技术, 2019, 37(5): 373

    Liang J M, Wang L M, He W, et al. Effect of milling time on microstructures and hardness of nanocrystalline Al–7Si–0.3Mg alloy powders. Powder Metall Technol, 2019, 37(5): 373
    [22]
    邹柯, 邓春明, 刘敏, 等. TiB2–SiC粉末喷雾造粒及其等离子喷涂沉积机理研究. 稀有金属材料与工程, 2019, 48(1): 213

    Zou K, Deng C M, Liu M, et al. Research spray granulation and plasma spraying deposition mechanism of TiB2–TiC powders. Rare Met Mater Eng, 2019, 48(1): 213
    [23]
    Zou Y M, Wu Y S, Wang J Z, et al. Preparation, mechanical properties and cyclic oxidation behavior of the nanostructured NiCrCoAlY–TiB2 coating. Ceram Int, 2018, 44(16): 19362 DOI: 10.1016/j.ceramint.2018.07.165
    [24]
    Li X P, Ji G, Chen Z, et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Mater, 2017, 129: 183 DOI: 10.1016/j.actamat.2017.02.062
    [25]
    Kumar N, Gautam G, Gautam R K, et al. Synthesis and characterization of TiB2 reinforced aluminium matrix composites: a review. J Inst Eng (India): Series D, 2016, 97: 233 DOI: 10.1007/s40033-015-0091-7
    [26]
    Alfaify A Y, Hughes J, Ridgway K. Critical evaluation of the pulsed selective laser melting process when fabricating Ti64 parts using a range of particle size distributions. Add Manuf, 2018, 19: 197
    [27]
    Rohit T, Kurian A, Senthilkumaran K, et al. Studies on absorptivity and marangoni flow during laser sintering. Adv Mater Res, 2012, 622-623: 531 DOI: 10.4028/www.scientific.net/AMR.622-623.531
  • Related Articles

    [1]YOU Yuanqi, LI Caiju, YANG Chao, XING Yuan, PENG Yanzhi, YI Jianhong. Effect of ball milling process on microstructure and mechanical properties of CNTs/Al composites[J]. Powder Metallurgy Technology, 2024, 42(4): 331-337, 345. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100003
    [2]CAI Xiaoping, YIN Jinnan, ZHANG Zhipeng, FENG Peizhong. Reaction behavior, microstructure, and mechanical properties of FeAl-316 stainless steel joints[J]. Powder Metallurgy Technology, 2024, 42(2): 107-114. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110009
    [3]YANG Jie, LIU Le, HUANG Xiaolin. Microstructure and mechanical properties of powder metallurgy sinter hardening steels with low Cr content[J]. Powder Metallurgy Technology, 2023, 41(4): 345-349, 355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060008
    [4]GU Jing-hong, XIAO Ping-an, XIAO Li-yang, LÜ Rong, GU Si-min, ZHAO Ji-kang. Microstructure and mechanical properties of TiC particle enhanced high chromium iron[J]. Powder Metallurgy Technology, 2021, 39(4): 319-325. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080001
    [5]DONG Di, KANG Ju-lei, XIONG Ning, WANG Cheng-yang. Effects of HfC content on microstructure and mechanical properties of titanium zirconium molybdenum alloys[J]. Powder Metallurgy Technology, 2021, 39(3): 239-244. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030021
    [6]WEI Zi-chen, ZHANG Lin, QIN Ming-li, LI Xing-yu, QUE Zhong-you, QU Xuan-hui. Effect of powder size on microstructure and mechanical properties of rhenium[J]. Powder Metallurgy Technology, 2021, 39(3): 196-202. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030014
    [7]WANG Xin-feng, HE Wei-wei, ZHU Ji-lei, XIANG Chang-shu. Microstructure and mechanical properties of Fe–Co–Ni based superalloy prepared by hot isostatic pressing[J]. Powder Metallurgy Technology, 2020, 38(5): 371-376, 390. DOI: 10.19591/j.cnki.cn11-1974/tf.2019060006
    [8]SUN Lu, ZHANG Ji-feng, QIU Tian-xu, SHEN Xiao-ping. Effect of forging temperature on microstructure and mechanical properties of powder hot-forged alloy contained molybdenum[J]. Powder Metallurgy Technology, 2020, 38(3): 174-182. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.002
    [9]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
    [10]SUN Lu, ZHOU Chun-fang, WANG Hui-ya, SHEN Xiao-ping, XU Xu-dong. Microstructure and mechanical properties of powder metallurgy forging bilayer cam[J]. Powder Metallurgy Technology, 2017, 35(6): 403-410. DOI: 10.19591/j.cnki.cn11-1974/tf.2017.06.001
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return