AdvancedSearch
LI Chang-yun, YANG Er-kuo, LI Lei, XU Lei, MI Guo-fa. Research progress and preparation of closed-cell metal matrix syntactic foams[J]. Powder Metallurgy Technology, 2020, 38(5): 383-390. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070009
Citation: LI Chang-yun, YANG Er-kuo, LI Lei, XU Lei, MI Guo-fa. Research progress and preparation of closed-cell metal matrix syntactic foams[J]. Powder Metallurgy Technology, 2020, 38(5): 383-390. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070009

Research progress and preparation of closed-cell metal matrix syntactic foams

More Information
  • Corresponding author:

    XU Lei, E-mail: xulei_80@126.com

  • Received Date: July 23, 2020
  • Closed-cell metal matrix syntactic foam (MMSF) is a kind of new porous composite materials formed by embedding the hollow microspheres into the metal or alloy matrix, using the hollow microspheres and metal powders as the raw materials. Due to the lightweight, high strength, good damping, energy-absorbing capability, thermal insulation, sound absorption, electromagnetic shielding, and other excellent properties, the closed-cell metal matrix syntactic foams can be widely used in the fields of shock absorption, buffer damping, and impact prevention. The preparation method of the closed-cell metal matrix syntactic foams by hollow microspheres were introduced in this paper, some problems existing in the preparation process were summarized and the application of the closed-cell metal matrix foams were overviewed.
  • [1]
    Yu M, Zhu P, Ma Y Q. Experimental study and numerical prediction of tensile strength properties and failure modes of hollow spheres filled syntactic foams. Comput Mater Sci, 2012, 63: 232 DOI: 10.1016/j.commatsci.2012.06.024
    [2]
    Májlinger K. Wear properties of hybrid AlSi12 matrix syntactic foams. Int J Mater Res, 2015, 106(11): 1165 DOI: 10.3139/146.111290
    [3]
    Wu G H, Dou Z Y, Sun D L, et al. Compression behaviors of cenosphere-pure aluminum syntactic foams. Scr Mater, 2007, 56(3): 221 DOI: 10.1016/j.scriptamat.2006.10.008
    [4]
    Matsunaga T, Kim J K, Hardcastle S, et al. Crystallinity and selected properties of fly ash particles. Mater Sci Eng A, 2002, 325: 333 DOI: 10.1016/S0921-5093(01)01466-6
    [5]
    Szlancsik A, Katona B, Kemeny A, et al. On the filler materials of metal matrix syntactic foams. Materials, 2019, 12(12): 2023 DOI: 10.3390/ma12122023
    [6]
    Braszczyńska-Malik K N, Kamieniak J. AZ91 magnesium matrix foam composites with fly ash cenospheres fabricated by negative pressure infiltration technique. Mater Charact, 2017, 128: 209 DOI: 10.1016/j.matchar.2017.04.005
    [7]
    Huang Z Q, Yu S R, LI M Q. Microstructures and compressive properties of AZ91D/fly-ash cenospheres composites. Trans Nonferrous Met Soc China, 2010, 20: 458 DOI: 10.1016/S1003-6326(09)60162-X
    [8]
    Rajan T P D, Pillai R M, Pai B C, et al. Fabrication and characterisation of Al–7Si–0.35Mg/fly ash metal matrix composites processed by different stir casting routes. Compos Sci Technol, 2007, 67(15-16): 3369 DOI: 10.1016/j.compscitech.2007.03.028
    [9]
    Orbulov I, Májlinger K. On the microstructure of ceramic hollow microspheres. Period Polytech Mech Eng, 2010, 54(2): 89 DOI: 10.3311/pp.me.2010-2.05
    [10]
    Santa Maria J A, Schultz B F, Ferguson J B, et al. Effect of hollow sphere size and size distribution on the quasi-static and high strain rate compressive properties of Al–A380–Al2O3 syntactic foams. J Mater Sci, 2014, 49(3): 1267 DOI: 10.1007/s10853-013-7810-y
    [11]
    Wu R B, Zhou K, Yue C Y, et al. Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog Mater Sci, 2015, 72: 1 DOI: 10.1016/j.pmatsci.2015.01.003
    [12]
    Shcherban N D. Review on synthesis, structure, physical and chemical properties and functional characteristics of porous silicon carbide. J Ind Eng Chem, 2017, 50: 15 DOI: 10.1016/j.jiec.2017.02.002
    [13]
    Shunmugasamy V C, Zeltmann S E, Gupta N, et al. Compressive characterization of single porous SiC hollow particles. JOM, 2014, 66(6): 892 DOI: 10.1007/s11837-014-0954-7
    [14]
    王雪平, 张磊, 杨久俊, 等. SiC空心球的制备与表征. 材料导报, 2009, 23(14): 22 DOI: 10.3321/j.issn:1005-023X.2009.14.007

    Wang X P, Zhang L, Yang J J, et al. Preparation and characterization of SiC hollow spheres. Mater Rev. 2009, 23(14): 22 DOI: 10.3321/j.issn:1005-023X.2009.14.007
    [15]
    Luong D D, Strbik Ⅲ O M, Hammond V H, et al. Development of high performance lightweight aluminum alloy/SiC hollow sphere syntactic foams and compressive characterization at quasi-static and high strain rates. J Alloys Compd, 2013, 550: 412 DOI: 10.1016/j.jallcom.2012.10.171
    [16]
    Lin Y F, Zhang Q, Ma X Y, et al. Mechanical behavior of pure Al and Al–Mg syntactic foam composites containing glass cenospheres. Composites Part A, 2016, 87: 194 DOI: 10.1016/j.compositesa.2016.05.001
    [17]
    Taherishargh M, Belova I V, Murch G E, et al. Pumice/aluminium syntactic foam. Mate Sci Eng A, 2015, 635: 102 DOI: 10.1016/j.msea.2015.03.061
    [18]
    陈健美, 崔学敏, 罗翔, 等. 真空吸铸法制备铝基空心陶瓷球泡沫材料的结构和性能. 湖南有色金属, 2012, 28(3): 46 https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ201203015.htm

    Chen J M, Cui X M, Luo X, et al. The structure and property of Al matrix syntactic foam fabricated with ceramic microspheres prepared by vacuum casting method. Hunan Nonferrous Met, 2012, 28(3): 46 https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ201203015.htm
    [19]
    Zhang L P, Zhao Y Y. Mechanical response of Al matrix syntactic foams produced by pressure infiltration casting. J Compos Mater, 2016, 41(17): 2105 http://adsabs.harvard.edu/abs/2007JCoMa..41.2105Z
    [20]
    Orbulov I N. Metal matrix syntactic foams produced by pressure infiltration — The effect of infiltration parameters. Mater Sci Eng A, 2013, 583: 11 DOI: 10.1016/j.msea.2013.06.066
    [21]
    Vogiatzis C A, Skolianos S M. On the sintering mechanisms and microstructure of aluminium–ceramic cenospheres syntactic foams produced by powder metallurgy route. Composites Part A, 2016, 82: 8 DOI: 10.1016/j.compositesa.2015.11.037
    [22]
    Kamieniak J, Braszczyńska-Malik K N. Problems fabricating cast magnesium matrix composites with aluminosilicate cenospheres. Compos Theory Pract, 2014, 14: 214 http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-ac08e878-e1ff-48e2-94c3-1ce26e3a09c0
    [23]
    Mondal D P, Das S, Ramakrishnan N, et al. Cenosphere filled aluminum syntactic foam made through stir-casting technique. Composites Part A, 2009, 40(3): 279 DOI: 10.1016/j.compositesa.2008.12.006
    [24]
    Rabiei A, O'Neill A T. A study on processing of a composite metal foam via casting. Mater Sci Eng A, 2005, 404(1-2): 159 DOI: 10.1016/j.msea.2005.05.089
    [25]
    贾成厂, 郭宏. 复合材料教程. 北京: 高等教育出版社, 2010

    Jia C C, Guo H. Composites Course. Beijing: Higher Education Press, 2010
    [26]
    魏莉, 姚广春, 张晓明, 等. 粉末冶金法制备泡沫铝材料. 东北大学学报(自然科学版), 2003, 24(11): 53 https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200311014.htm

    Wei L, Yao G C, Zhang X M, et al. Preparation of foam aluminium by powder metallurgy process. J Northeastern Univ Nat Sci, 2003, 24(11): 53 https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200311014.htm
    [27]
    Neville B P, Rabiei A. Composite metal foams processed through powder metallurgy. Mater Des, 2008, 29(2): 388 DOI: 10.1016/j.matdes.2007.01.026
    [28]
    Cho Y J, Lee T S, Lee W, et al. Preparation and characterization of iron matrix syntactic foams with glass microspheres via powder metallurgy. Met Mater Int, 2019, 25(3): 794 DOI: 10.1007/s12540-018-00215-w
    [29]
    Akinwekomi A D, Adebisi J A, Adediran A A. Compressive characteristics of aluminum-fly ash syntactic foams processed by microwave sintering. Metall Mater Trans A, 2019, 50(9): 4257 DOI: 10.1007/s11661-019-05347-1
    [30]
    王庆平, 闵凡飞. 吴玉程, 等. 粉煤灰/铝–镁合金复合材料的微观组织及摩擦磨损性能. 中国有色金属学报, 2012, 22(4): 1039 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201204009.htm

    Wang Q P, Min F F, Wu Y C, et al. Microstructures and friction and wear properties of fly ash/Al–Mg alloy composites. Chin J Nonferrous Met, 2012, 22(4): 1039 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201204009.htm
    [31]
    Lehmhus D, Weise J, Baumeister J, et al. Quasi-static and dynamic mechanical performance of glass microsphere- and cenosphere-based 316L syntactic foams. Proc Mater Sci, 2014, 4: 383 DOI: 10.1016/j.mspro.2014.07.578
    [32]
    Sudarshan, Surappa M K. Synthesis of fly ash particle reinforced A356 Al composites and their characterization. Mater Sci Eng A, 2007, 480(1-2): 117 http://www.sciencedirect.com/science/article/pii/S0921509307013858
    [33]
    Manakari V, Parande G, Doddamani M, et al. Evaluation of wear resistance of magnesium/glass microballoon syntactic foams for engineering/biomedical applications. Ceram Int, 2019, 45(7): 9302 DOI: 10.1016/j.ceramint.2019.01.207
    [34]
    Banhart J. Aluminium foams for lighter vehicles. Int J Veh Des, 2005, 37(2-3): 114 http://www.ingentaconnect.com/content/ind/ijvd/2005/00000037/F0020002/art00001
  • Related Articles

    [1]Effect of solution treatment on the microstructure and properties of UNS S32750 super duplex stainless steel prepared by selective laser melting[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024110001
    [2]CAI Xiaoping, YIN Jinnan, ZHANG Zhipeng, FENG Peizhong. Reaction behavior, microstructure, and mechanical properties of FeAl-316 stainless steel joints[J]. Powder Metallurgy Technology, 2024, 42(2): 107-114. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110009
    [3]Effects of Deoxidizing Elements Ti and La on the Microstructure and Mechanical Properties of Additively Manufactured Martensitic Stainless Steel[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024060018
    [4]HU Jianbin, LIU Xiaojing, WANG Zhiyong, SHANG Feng, HE Yiqiang, YANG Jianming. Microstructure and properties of 316L/430 duplex stainless steels processed by selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(4): 302-306. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090007
    [5]LI Jie, LIU Wen-sheng, CAI Qing-shan, DUAN You-teng, ZHU Wen-tan, MA Yun-zhu. Effect of powder characteristics on microstructure and properties of 30CrMnSiNi2A steels[J]. Powder Metallurgy Technology, 2022, 40(5): 441-450. DOI: 10.19591/j.cnki.cn11-1974/tf.2022030015
    [6]WEI Zi-chen, ZHANG Lin, QIN Ming-li, LI Xing-yu, QUE Zhong-you, QU Xuan-hui. Effect of powder size on microstructure and mechanical properties of rhenium[J]. Powder Metallurgy Technology, 2021, 39(3): 196-202. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030014
    [7]WANG Xin-feng, HE Wei-wei, ZHU Ji-lei, XIANG Chang-shu. Microstructure and mechanical properties of Fe–Co–Ni based superalloy prepared by hot isostatic pressing[J]. Powder Metallurgy Technology, 2020, 38(5): 371-376, 390. DOI: 10.19591/j.cnki.cn11-1974/tf.2019060006
    [8]ZHANG Peng, WANG Zhi-yong, SHANG Feng, LI Hua-qiang, HE Yi-qiang. Effect of two phase mass ratio on the microstructure and mechanical properties of duplex stainless steel fabricated by powder metallurgy[J]. Powder Metallurgy Technology, 2020, 38(4): 269-274. DOI: 10.19591/j.cnki.cn11-1974/tf.2019060003
    [9]SUN Lu, ZHANG Ji-feng, QIU Tian-xu, SHEN Xiao-ping. Effect of forging temperature on microstructure and mechanical properties of powder hot-forged alloy contained molybdenum[J]. Powder Metallurgy Technology, 2020, 38(3): 174-182. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.002
    [10]Tong Guoquan, Wang Erde, He Shaoyuan. THE INFLUENCE OF THE BINDER COMPOSITION ON THE MICROSTRUCTURES AND MECHANICAL PROPERTIES OF WC-20(Fe/Co/Ni) CEMENTED CARBIDES[J]. Powder Metallurgy Technology, 1995, 13(4): 243-248.
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return