AdvancedSearch
ZHANG Zhi-hui, LI Ming. Analysis of microstructure and friction property on 316L steels coated with Fe-based powders by high velocity oxy-fuel[J]. Powder Metallurgy Technology, 2022, 40(4): 351-355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080002
Citation: ZHANG Zhi-hui, LI Ming. Analysis of microstructure and friction property on 316L steels coated with Fe-based powders by high velocity oxy-fuel[J]. Powder Metallurgy Technology, 2022, 40(4): 351-355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080002

Analysis of microstructure and friction property on 316L steels coated with Fe-based powders by high velocity oxy-fuel

More Information
  • Corresponding author:

    ZHANG Zhi-hui, E-mail: fudi8235362@126.com

  • Received Date: August 05, 2020
  • Accepted Date: November 02, 2021
  • Available Online: November 04, 2021
  • The Fe-based powders with the better plasticity and toughness were obtained by liquid nitrogen cycling, the Fe-based powder coatings were generated by high-speed impact on the substrate surface of 316L steels used for building using the high velocity oxy-fuel method, and the relationship between the coating tribological characteristics and the liquid nitrogen cycling was analyzed. The results show that, both the powders treated by liquid nitrogen cycling and the untreated original powders are amorphous, and the appearance morphology of the powders belongs to ellipsoid without the causing cracking or crushing. After the liquid nitrogen cycle treatment, only a small number of the undispersed particles exist in the powder coating tissues, and the porosity also decreases significantly, forming a denser tissue. The liquid nitrogen cycle method can be used to improve the plasticity of powders, and the powders can be deposited in a better spreading state. The powder coatings after the liquid nitrogen cycle treatment can obtain the more stable tribological properties and show the denser structure, the number of pores and cracks reduces significantly, the friction coefficient decreases obviously, the oxidation wear mainly occurs, and the wear depth and the wear rate error are lower.

  • [1]
    黄炎, 丁彰雄, 喻仲昆, 等. 微纳米WC‒10Co4Cr涂层在NaCl介质中的抗泥沙冲蚀性能研究. 热喷涂技术, 2019, 11(4): 16 DOI: 10.3969/j.issn.1674-7127.2019.04.003

    Huang Y, Ding Z X, Yu Z K, et al. Research on slurry erosion resistance of micro-nano WC‒10Co4Cr coatings in NaCl solution. Therm Spray Technol, 2019, 11(4): 16 DOI: 10.3969/j.issn.1674-7127.2019.04.003
    [2]
    Henao J, Concustell A, Dosta S, et al. Influence of the substrate on the formation of metallic glass coatings by cold gas spraying. J Therm Spray Technol, 2016, 25(5): 992 DOI: 10.1007/s11666-016-0419-3
    [3]
    杨二娟, 李勇, 李巍, 等. 燃料类型及喷涂参数对HVOF喷涂WC‒10Co4Cr涂层的组织及力学性能的影响. 中国表面工程, 2019, 32(5): 136 DOI: 10.11933/j.issn.1007-9289.20190405001

    Yang E J, Li Y, Li W, et al. Effects of fuel type and spraying parameters on microstructure and mechanical properties of HVOF sprayed WC‒10Co4Cr coatings. China Surf Eng, 2019, 32(5): 136 DOI: 10.11933/j.issn.1007-9289.20190405001
    [4]
    Ketov S V, Sun Y H, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain. Nature, 2015, 524(7564): 200 DOI: 10.1038/nature14674
    [5]
    Liao Z, Hua N, Chen W, et al. Correlations between the wear resistance and properties of bulk metallic glasses. Intermetallics, 2018, 93: 290 DOI: 10.1016/j.intermet.2017.10.008
    [6]
    胡生双, 王文博, 王柯, 等. 超音速火焰喷涂WC‒17Co涂层与电镀硬Cr层结构及性能对比. 中国科技信息, 2019(19): 76

    Hu S S, Wang W B, Wang K, et al. Comparison of structure and properties between supersonic flame spraying WC‒17CO coating and electroplating hard Cr layer. China Sci Technol Inf, 2019(19): 76
    [7]
    曹洋, 张鹏林, 牛显明, 等. 镍铬‒莫来石复合陶瓷涂层热障及热震性能的研究. 粉末冶金技术, 2021, 39(2): 135

    Cao Y, Zhang P L, Niu X M, et al. Research on thermal barrier and thermal shock resistance of NiCr‒mullite composite ceramic coating. Powder Metall Technol, 2021, 39(2): 135
    [8]
    王跃明, 闵小兵, 熊翔, 等. 高品质钼靶材低压等离子喷涂成形技术研究. 粉末冶金技术, 2017, 35(4): 284

    Wang Y M, Min X B, Xiong X, et al. Study on the high-quality molybdenum target fabricated by low pressure plasma spraying. Powder Metall Technol, 2017, 35(4): 284
    [9]
    Koga G Y, Schulz R, Savoie S, et al. Microstructure and wear behavior of Fe-based amorphous HVOF coatings produced from commercial precursors. Surf Coat Technol, 2017, 309: 938 DOI: 10.1016/j.surfcoat.2016.10.057
    [10]
    刘名涛, 钟喜春, 刘仲武, 等. 等离子喷涂制备MoSi2‒CoNiCrAlY纳米复合涂层的结构与性能. 材料工程, 2014(5): 17 DOI: 10.11868/j.issn.1001-4381.2014.05.004

    Liu M T, Zhong X C, Liu Z W, et al. Structure and properties of MoSi2‒CoNiCrAlY Nano-composite coating by plasma spraying. J Mater Eng, 2014(5): 17 DOI: 10.11868/j.issn.1001-4381.2014.05.004
    [11]
    Chu Z H, Wei F S, Zheng X W, et al. Microstructure and properties of TiN/Fe-based amorphous composite coatings fabricated by reactive plasma spraying. J Alloys Compd, 2019, 785: 206 DOI: 10.1016/j.jallcom.2019.01.171
    [12]
    刘倩楠, 刘咏, 李飞, 等. 热处理对Fe基粉末涂层的相组成及摩擦磨损行为的影响. 粉末冶金材料科学与工程, 2012, 17(5): 586 DOI: 10.3969/j.issn.1673-0224.2012.05.007

    Liu Q N, Liu Y, Li F, et al. Effect of heat treatment on micro-structure and wear behaviors of iron-base amorphous alloy coatings. Mater Sci Eng Powder Metall, 2012, 17(5): 586 DOI: 10.3969/j.issn.1673-0224.2012.05.007
    [13]
    Jang B T, Kim S S, Yi S. Wear behaviors of a Fe-based amorphous alloy in ambient atmosphere and in distilled water. Met Mater Int, 2014, 20(1): 55 DOI: 10.1007/s12540-014-1034-9
    [14]
    高涵, 魏先顺, 梁丹丹, 等. 超音速火焰喷涂Fe基非晶合金涂层材料的摩擦磨损性能研究. 表面技术, 2008, 47(2): 55

    Gao H, Wei X S, Liang D D, et al. Friction and wear properties of HVAF sprayed Fe-based amorphous alloy coatings. Surf Technol, 2008, 47(2): 55
    [15]
    韩建军, 高振, 鲁元, 等. 超音速火焰喷涂制备Fe基非晶涂层的组织结构及耐蚀性. 热加工工艺, 2015, 44(14): 187

    Han J J, Gao Z, Lu Y, et al. Structure and corrosion resistant of Fe base amorphous coating by HVOF. Hot Working Technol, 2015, 44(14): 187
  • Related Articles

    [1]CHEN Bing-wei, YANG Xue-feng, ZHU Zhen-dong, LI Zheng-xin. Surface morphology characterization of diamond etched by CeO2[J]. Powder Metallurgy Technology, 2022, 40(4): 318-324. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090018
    [2]LIN Bing-tao, HE Jun, LIU Zhong-wei, WANG Cheng-yang, LI Ming, SUN Xiao-xia, ZHOU Shu-qiu. Fracture morphology and microstructure analysis of Mo–La nozzles for solid rocket motor[J]. Powder Metallurgy Technology, 2022, 40(1): 80-85. DOI: 10.19591/j.cnki.cn11-1974/tf.2021070003
    [3]YANG Wen-tao, XUE Bing, DAI Yong-fu, PU Chuan-jin, XIAO Ding-jun. Effect of milling time on the particle size distribution and morphology of tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(5): 423-428. DOI: 10.19591/j.cnki.cn11-1974/tf.2020020010
    [4]SI Jia-jia, SU Xiao-lei. Preparation of ultrafine spherical nickel powders[J]. Powder Metallurgy Technology, 2021, 39(2): 177-183. DOI: 10.19591/j.cnki.cn11-1974/tf.2019090003
    [5]SUN Tian-hao, HAO Su-ju, JIANG Wu-feng, ZHANG Yu-zhu. Preparation and morphology analysis of nano-sized iron oxide[J]. Powder Metallurgy Technology, 2021, 39(1): 76-80. DOI: 10.19591/j.cnki.cn11-1974/tf.2019080008
    [6]ZHANG Bao-hong, TANG Liang-liang. Study on the erosion morphology of W-Ni-Sr electrode[J]. Powder Metallurgy Technology, 2020, 38(4): 289-294. DOI: 10.19591/j.cnki.cn11-1974/tf.2019050007
    [7]LUO Xiao-qiang, HAN Yong-jun, FENG Yun-xiao, YU Hao, YU Chun-bo, ZHAO Li-heng. Effect of bucket temperature on grain morphology of semi-solid melt A356 by micro fused-casting[J]. Powder Metallurgy Technology, 2019, 37(3): 170-174. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.002
    [8]Hydrothermal synthesis of micro-copper powders with special morphology[J]. Powder Metallurgy Technology, 2010, 28(3): 200-203.
    [9]Du Huiling, Wang Jianzhong, Chen Danfeng, Cang Daqiang. Effects of pulsed electromagnetic field on morphology of cobalt oxalate powders[J]. Powder Metallurgy Technology, 2010, 28(2): 96-100.
    [10]Xu Tianhan, Wang Danghui. Effect of inner diameter of delivery tube end of atomizer on morphology and size distribution of free-lead solder powder[J]. Powder Metallurgy Technology, 2009, 27(3): 197-202.
  • Cited by

    Periodical cited type(5)

    1. 王哲昊,吕绪明. 等离子喷涂技术在工程陶瓷涂层制备中的应用现状及展望. 材料导报. 2024(11): 52-61 .
    2. 陈开旺,张鹏林,李树旺,牛显明,胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能. 材料研究学报. 2023(01): 39-46 .
    3. 张一帆,王曲,王刚,刘鹏程,张琪,司瑶晨. 黏结剂种类对铝酸镧涂层材料性能的影响. 耐火材料. 2022(02): 123-126 .
    4. 张志辉,李明. 316L钢表面超音速火焰喷涂Fe基粉末涂层显微结构及摩擦性能分析. 粉末冶金技术. 2022(04): 351-355+361 . 本站查看
    5. 蔡浩,龚关,梁雅琪,仇秀梅,刘可. 莫来石在醇基铸造涂料中的试验研究. 中国新技术新产品. 2022(21): 26-28+145 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return