AdvancedSearch
YANG Lai-xia, DANG Su-wu, WANG Xin-yu. Metal additive manufacturing technology for emergency maintenance of field equipment[J]. Powder Metallurgy Technology, 2022, 40(4): 325-333. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080009
Citation: YANG Lai-xia, DANG Su-wu, WANG Xin-yu. Metal additive manufacturing technology for emergency maintenance of field equipment[J]. Powder Metallurgy Technology, 2022, 40(4): 325-333. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080009

Metal additive manufacturing technology for emergency maintenance of field equipment

More Information
  • Corresponding author:

    DANG Su-wu, E-mail:dangsw0318@163.com

  • Received Date: August 23, 2020
  • Accepted Date: September 21, 2020
  • Available Online: April 17, 2022
  • Metal additive manufacturing technology can be used for the emergency maintenance of field equipment and shows the characteristics of high-usage, high flexibility, and rapidity, which may effectively overcome the defects of the traditional equipment emergency maintenance and improve the emergency support capability of field equipment. The forming efficiency, forming accuracy, and mechanical property of the common metal additive manufacturing technology were compared in this paper. Combined with the application status at home and aboard of the metal additive manufacturing technology in the field of equipment maintenance and the characteristics of the emergency maintenance of field equipment, the forming quality, forming ability, equipment mobility, and anti-jamming ability were analyzed. The conclusion was shown that the laser cladding deposition (LCD) and wire and arc additive manufacturing (WAAM) were more suitable for the emergency maintenance of field equipment. Finally, the existing problems and the future trends of LCD and WAAM used for the mergency maintenance of field equipment were discussed.

  • [1]
    石安平, 郑振铎, 常永杰. 战时装备应急维修探讨//第十二次全国机械维修学术会议论文集. 黄山, 2011: 124

    Shi A P, Zheng Z D, Chang Y J. Discussion on emergency maintenance of wartime equipment // Proceedings of the 12th National Mechanical Maintenance Conference. Huangshan, 2011: 124
    [2]
    曹文斌, 贾希胜, 胡起伟, 等. 基于选择性维修的装备战场抢修决策建模. 系统工程与电子技术, 2018, 40(1): 98 DOI: 10.3969/j.issn.1001-506X.2018.01.15

    Cao W B, Jia X S, Hu Q W, et al. Equipment battlefield damage assessment and repair decision-making modeling based on selective maintenance. Syst Eng Electron, 2018, 40(1): 98 DOI: 10.3969/j.issn.1001-506X.2018.01.15
    [3]
    赵剑峰, 马智勇, 谢德巧, 等. 金属增材制造技术. 南京航空航天大学学报, 2014, 46(5): 675 DOI: 10.3969/j.issn.1005-2615.2014.05.003

    Zhao J F, Ma Z Y, Xie D Q, et al. Metal additive manufacturing technique. J Nanjing Univ Aeronaut Astronaut, 2014, 46(5): 675 DOI: 10.3969/j.issn.1005-2615.2014.05.003
    [4]
    朱学超, 魏青松, 孙春华. 激光选区熔化成形S136模具钢热处理组织和性能研究. 粉末冶金技术, 2019, 37(2): 83

    Zhu X C, Wei Q S, Sun C H. Study on microstructures and properties of S136 die steel formed by selective laser melting after heat treatment. Powder Metall Technol, 2019, 37(2): 83
    [5]
    孙信, 杨怀超, 邵文生, 等. 3D打印一体化制备阴极热子组件研究. 粉末冶金技术, 2020, 38(4): 300

    Sun X, Yang H C, Shao W S, et al. Study on integrated fabrication of cathode-heater assembly by 3D printing. Powder Metall Technol, 2020, 38(4): 300
    [6]
    Wolf T, Fu Z W, Körner C. Selective electron beam melting of an aluminum bronze: Microstructure and mechanical properties. Mater Lett, 2019, 238: 241 DOI: 10.1016/j.matlet.2018.12.015
    [7]
    Liu Z C, Cong W L, Kim H, et al. Feasibility exploration of superalloys for AISI 4140 steel repairing using laser engineered net shaping. Procedia Manuf, 2017, 10: 912 DOI: 10.1016/j.promfg.2017.07.080
    [8]
    Guo Y Y, Pan H H, Ren L B, et al. Microstructure and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy. Mater Lett, 2019, 247: 4 DOI: 10.1016/j.matlet.2019.03.063
    [9]
    Shu X, Chen G Q, Liu J P, et al. Microstructure evolution of copper/steel gradient deposition prepared using electron beam freeform fabrication. Mater Lett, 2018, 213: 374 DOI: 10.1016/j.matlet.2017.11.016
    [10]
    杨文雄, 杨永强, 刘洋, 等. 激光选区熔化成型典型几何特征尺寸精度研究. 中国激光, 2015, 42(3): 70

    Yang W X, Yang Y Q, Liu Y, et al. Study on dimensional accuracy of typical geometric features manufactured by selective laser melting. Chin J Lasers, 2015, 42(3): 70
    [11]
    王会杰, 崔照雯, 孙峰, 等. 激光选区熔化成形技术制备高温合金GH4169复杂构件. 粉末冶金技术, 2016, 34(5): 368 DOI: 10.3969/j.issn.1001-3784.2016.05.009

    Wang H J, Cui Z W, Sun F, et al. Superalloy GH4169 complicated components prepared by selective laser melting forming technique. Powder Metall Technol, 2016, 34(5): 368 DOI: 10.3969/j.issn.1001-3784.2016.05.009
    [12]
    Rodrigues T A, Duarte V, Avila J A, et al. Wire and arc additive manufacturing of HSLA steel: Effect of thermal cycles on microstructure and mechanical properties. Addit Manuf, 2019(27): 440
    [13]
    杨强, 鲁中良, 黄福享, 等. 激光增材制造技术的研究现状及发展趋势. 航空制造技术, 2016(12): 26

    Yang Q, Lu Z L, Huang F X, et al. Research on status and development trend of laser additive manufacturing. Aeronaut Manuf Technol, 2016(12): 26
    [14]
    王启伟, 朱胜, 陈春良, 等. 能束能场增材再制造技术的研究进展. 中国表面工程, 2018, 31(6): 1 DOI: 10.11933/j.issn.1007-9289.20181017001

    Wang Q W, Zhu S, Chen C L, et al. Research progress of additive remanufacturing technology based on energy beam and energy field. China Surf Eng, 2018, 31(6): 1 DOI: 10.11933/j.issn.1007-9289.20181017001
    [15]
    Verhoef L A, Budde B W, Chockalingam C, et al. The effect of additive manufacturing on global energy demand: An assessment using a bottom-up approach. Energy Policy, 2018, 112: 349 DOI: 10.1016/j.enpol.2017.10.034
    [16]
    杨笑宇, 李言, 赵鹏康, 等. 电弧增材制造技术在材料制备中的研究现状及挑战. 焊接, 2018(8): 14

    Yang X Y, Li Y, Zhao P K, et al. Research status and challenges of arc additive manufacturing technology in material preparation. Weld Join, 2018(8): 14
    [17]
    Ahmed N. Direct metal fabrication in rapid prototyping: A review. J Manuf Process, 2019, 42: 167 DOI: 10.1016/j.jmapro.2019.05.001
    [18]
    黄春平, 黄硕文, 刘奋成. 金属材料增材制造技术. 金属加工(热加工), 2016(2): 34

    Huang C P, Huang S W, Liu F C. Metal materials additive manufacturing. Mach Met Form, 2016(2): 34
    [19]
    邢希学, 潘丽华, 王勇, 等. 电子束选区熔化增材制造技术研究现状分析. 焊接, 2016(7): 22 DOI: 10.3969/j.issn.1001-1382.2016.07.005

    Xing X X, Pan L H, Wang Y, et al. Research status analysis of electron beam 3D printing technology. Weld Join, 2016(7): 22 DOI: 10.3969/j.issn.1001-1382.2016.07.005
    [20]
    陈国庆, 树西, 张秉刚, 等. 国内外电子束熔丝沉积增材制造技术发展现状. 焊接学报, 2018, 39(8): 123 DOI: 10.12073/j.hjxb.2018390214

    Chen G Q, Shu X, Zhang B G, et al. State-of-arts of electron beam freeform fabrication technology. Trans China Weld Inst, 2018, 39(8): 123 DOI: 10.12073/j.hjxb.2018390214
    [21]
    李权, 王福德, 王国庆, 等. 航空航天轻质金属材料电弧熔丝增材制造技术. 航空制造技术, 2018, 61(3): 74

    Li Q, Wang F D, Wang G Q. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics. Aeronaut Manuf Technol, 2018, 61(3): 74
    [22]
    刘继常. 金属增材制造研究现状与问题分析. 电加工与模具, 2018(2): 1 DOI: 10.3969/j.issn.1009-279X.2018.02.001

    Liu J C. Analysis of the state of the art and problems of metal additive manufacturing. Electromach Mould, 2018(2): 1 DOI: 10.3969/j.issn.1009-279X.2018.02.001
    [23]
    Ding D H, Pan Z X, Cuiuri D. Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol, 2015, 81(1-4): 465 DOI: 10.1007/s00170-015-7077-3
    [24]
    杨全占, 魏彦鹏, 高鹏, 等. 金属增材制造技术及其专用材料研究进展. 材料导报, 2016, 30(增刊1): 107

    Yang Q Z, Wei Y P, Gao P, et al. Research progress of metal additive manufacturing technologies and related materials. Mater Rev, 2016, 30(Suppl 1): 107
    [25]
    Xu J Q, Zhu J, Fan J K, et al. Microstructure and mechanical properties of Ti‒6Al‒4V alloy fabricated using electron beam freeform fabrication. Vacuum, 2019, 167: 364 DOI: 10.1016/j.vacuum.2019.06.030
    [26]
    江宏亮, 姚巨坤, 殷凤良. 丝材电弧增材制造技术的研究现状与应用. 热加工工艺, 2018, 47(18): 25

    Jiang H L, Yao J K, Yin F L. Research status and application of wire arc additive manufacturing technology. Hot Working Technol, 2018, 47(18): 25
    [27]
    Hao P, Morteza G K, Shan G, et al. Fast prediction of thermal distortion in metal powder bed fusion additive manufacturing: Part 2, a quasi-static thermo-mechanical model. Addit Manuf, 2018, 22: 869
    [28]
    Afkhami S, Dabiri M, Alavi S H, et al. Fatigue characteristics of steels manufactured by selective laser melting. Int J Fatigue, 2019, 122: 72 DOI: 10.1016/j.ijfatigue.2018.12.029
    [29]
    郭超, 张平平, 林峰. 电子束选区熔化增材制造技术研究进展. 工业技术创新, 2017, 4(4): 6

    Gao C, Zhang P P, Lin F. Research advances of electron beam selective melting additive manufacturing technology. Ind Technol Innov, 2017, 4(4): 6
    [30]
    杨永强, 陈杰, 宋长辉, 等. 金属零件激光选区熔化技术的现状及进展. 激光与光电子学进展, 2018, 55(1): 9

    Yang Y Q, Chen J, Song C H, et al. Current status and progress on technology of selective laser melting of metal parts. Laser Optoelectron Prog, 2018, 55(1): 9
    [31]
    Li Y J, Dong S Y, Yan S X, et al. Microstructure evolution during laser cladding Fe‒Cr alloy coatings on ductile cast iron. Opt Laser Technol, 2018, 108: 255 DOI: 10.1016/j.optlastec.2018.07.004
    [32]
    徐滨士. 表面工程的理论与技术. 北京: 国防工业出版社, 2010

    Xu B S. Theory and Technology of Surface Engineering. Beijing: National Defense Industry Press, 2010
    [33]
    Benjamin B, Rohan R, Richard K, et al. Systematic evaluation of process parameter maps for laser cladding and directed energy deposition. Addit Manuf, 2018, 21: 487
    [34]
    冉江涛, 赵鸿, 高华兵, 等. 电子束选区熔化成形技术及应用. 航空制造技术, 2019, 62(增刊1): 46

    Ran J T, Zhao H, Gao H B, Selective electron beam melting technique and its application. Aeronaut Manuf Technol, 2019, 62(Suppl 1): 46
    [35]
    Machry T, Eatock D, Meyer J, et al. Effect of microstructure on the tensile strength of Ti6Al4V specimens manufactured using additive manufacturing electron beam process. Powder Metall, 2016, 59(1): 41 DOI: 10.1080/00325899.2015.1123800
    [36]
    张凯, 刘伟军, 尚晓峰, 等. 快速原型技术在国防科技中的应用. 工具技术, 2005(11): 4

    Zhang K, Liu W J, Shang X F, et al. Applications of rapid protyping on national defense science and technology field. Tool Eng, 2005(11): 4
    [37]
    Gady B R. Upgrading readiness: success and improvements of the mobile parts hospital // 2005 SAE World Congress. Detroit, 2005, 01-0592
    [38]
    张永忠, 石力开. 高性能金属零件激光快速成形技术研究进展. 航空制造技术, 2010(8): 47 DOI: 10.3969/j.issn.1671-833X.2010.08.006

    Zhang Y Z, Shi L K. Process on laser rapid manufacturing of high performance. Aeronaut Manuf Technol, 2010(8): 47 DOI: 10.3969/j.issn.1671-833X.2010.08.006
    [39]
    Kathuria Y P. Some aspects of laser surface cladding in the turbine industry. Surf Coat Technol, 2000, 132(2-3): 262 DOI: 10.1016/S0257-8972(00)00735-0
    [40]
    石文. 德国MTU公司研究的整体叶盘结构. 国际航空, 1997(10): 57

    Shi W. Blisk structure of MTU company in Germany. Int Aviat, 1997(10): 57
    [41]
    张建平. 德国MTU公司民用航空发动机高压涡轮叶片维修技术. 航空制造技术, 2004(10): 70 DOI: 10.3969/j.issn.1671-833X.2004.10.003

    Zhang J P. Maintenance technology of high pressure turbine blade for civil aviation engine of MTU company. Aeronaut Manuf Technol, 2004(10): 70 DOI: 10.3969/j.issn.1671-833X.2004.10.003
    [42]
    Busachi A, Erkoyuncu J, Colegrove P, et al. Designing a WAAM based manufacturing system for defence applications. Procedia CIRP, 2015, 37: 48 DOI: 10.1016/j.procir.2015.08.085
    [43]
    Wilson J M, Piya C, Shin Y C, et al. Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J Clean Prod, 2014, 80: 170 DOI: 10.1016/j.jclepro.2014.05.084
    [44]
    Gäumann M, Bezençon C, Canalis P, et al. Single-crystal laser deposition of superalloys: processing-microstructure maps. Acta Mater, 2001, 49(6): 1051 DOI: 10.1016/S1359-6454(00)00367-0
    [45]
    Liu Z C, Jiang Q H, Li T, et al. Environmental benefits of remanufacturing: A case study of cylinder heads remanufactured through laser cladding. J Clean Prod, 2016, 133: 1027 DOI: 10.1016/j.jclepro.2016.06.049
    [46]
    任维彬, 董世运, 徐滨士, 等. FV520(B)钢叶片模拟件激光再制造工艺优化及成形修复. 材料工程, 2015, 43(1): 6 DOI: 10.11868/j.issn.1001-4381.2015.01.002

    Ren W B, Dong S Y, Xu B S, et al. Process optimization and forming repair of laser remanufacturing for FV520(B) steel blade simulator. J Mater Eng, 2015, 43(1): 6 DOI: 10.11868/j.issn.1001-4381.2015.01.002
    [47]
    徐力栋. 高强度铝合金焊接结构激光修复接头组织与性能研究[学位论文]. 成都: 西南交通大学, 2018

    Xu L D. Study on Microstructure and Properties of Welding Joint of Laser Repair of High-Strength Aluminum Alloy [Dissertation]. Chengdu: Southwest Jiaotong University, 2018
    [48]
    孙云飞. 铸件大缺陷电弧增材修复的路径规划研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2018

    Sun Y F. Research on Path Planning of Arc Additive Manufacturing for Repairing Large Defects of Casting [Dissertation]. Harbin: Harbin Institute of Technology, 2018
    [49]
    王凯, 陈英杰, 鲁立, 等. 核级法兰面在线电弧增材再制造技术研究. 金属加工(热加工), 2020(7): 2

    Wang K, Chen Y J, Lu L, et al. On line arc additive remanufacturing technology for nuclear flange. Mach Met Form, 2020(7): 2
    [50]
    张树祥, 钱海峰. 装备战场应急维修特点和人才培养. 四川兵工学报, 2009, 30(9): 149

    Zhang S X, Qian H F. Characteristics and personnel training of equipment battlefield emergency maintenance. J Sichuan Ordnan, 2009, 30(9): 149
    [51]
    强弢, 朱斌. 赛车快速维修在装备战场应急维修中应用研究. 价值工程, 2011, 30(10): 190 DOI: 10.3969/j.issn.1006-4311.2011.10.142

    Qiang T, Zhu B. The study on the application of pit-stop in battlefield emergency maintenance. Value Eng, 2011, 30(10): 190 DOI: 10.3969/j.issn.1006-4311.2011.10.142
    [52]
    马世宁, 刘谦, 孙晓峰. 装备应急维修技术研究. 中国表面工程, 2003, 16(3): 7

    Ma S N, Liu Q, Sun X F. Research on emergency maintenance technique of equipments. China Surf Eng, 2003, 16(3): 7
  • Related Articles

    [1]CHEN Bing-wei, YANG Xue-feng, ZHU Zhen-dong, LI Zheng-xin. Surface morphology characterization of diamond etched by CeO2[J]. Powder Metallurgy Technology, 2022, 40(4): 318-324. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090018
    [2]LIN Bing-tao, HE Jun, LIU Zhong-wei, WANG Cheng-yang, LI Ming, SUN Xiao-xia, ZHOU Shu-qiu. Fracture morphology and microstructure analysis of Mo–La nozzles for solid rocket motor[J]. Powder Metallurgy Technology, 2022, 40(1): 80-85. DOI: 10.19591/j.cnki.cn11-1974/tf.2021070003
    [3]YANG Wen-tao, XUE Bing, DAI Yong-fu, PU Chuan-jin, XIAO Ding-jun. Effect of milling time on the particle size distribution and morphology of tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(5): 423-428. DOI: 10.19591/j.cnki.cn11-1974/tf.2020020010
    [4]SI Jia-jia, SU Xiao-lei. Preparation of ultrafine spherical nickel powders[J]. Powder Metallurgy Technology, 2021, 39(2): 177-183. DOI: 10.19591/j.cnki.cn11-1974/tf.2019090003
    [5]SUN Tian-hao, HAO Su-ju, JIANG Wu-feng, ZHANG Yu-zhu. Preparation and morphology analysis of nano-sized iron oxide[J]. Powder Metallurgy Technology, 2021, 39(1): 76-80. DOI: 10.19591/j.cnki.cn11-1974/tf.2019080008
    [6]ZHANG Bao-hong, TANG Liang-liang. Study on the erosion morphology of W-Ni-Sr electrode[J]. Powder Metallurgy Technology, 2020, 38(4): 289-294. DOI: 10.19591/j.cnki.cn11-1974/tf.2019050007
    [7]LUO Xiao-qiang, HAN Yong-jun, FENG Yun-xiao, YU Hao, YU Chun-bo, ZHAO Li-heng. Effect of bucket temperature on grain morphology of semi-solid melt A356 by micro fused-casting[J]. Powder Metallurgy Technology, 2019, 37(3): 170-174. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.002
    [8]Hydrothermal synthesis of micro-copper powders with special morphology[J]. Powder Metallurgy Technology, 2010, 28(3): 200-203.
    [9]Du Huiling, Wang Jianzhong, Chen Danfeng, Cang Daqiang. Effects of pulsed electromagnetic field on morphology of cobalt oxalate powders[J]. Powder Metallurgy Technology, 2010, 28(2): 96-100.
    [10]Xu Tianhan, Wang Danghui. Effect of inner diameter of delivery tube end of atomizer on morphology and size distribution of free-lead solder powder[J]. Powder Metallurgy Technology, 2009, 27(3): 197-202.
  • Cited by

    Periodical cited type(5)

    1. 王哲昊,吕绪明. 等离子喷涂技术在工程陶瓷涂层制备中的应用现状及展望. 材料导报. 2024(11): 52-61 .
    2. 陈开旺,张鹏林,李树旺,牛显明,胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能. 材料研究学报. 2023(01): 39-46 .
    3. 张一帆,王曲,王刚,刘鹏程,张琪,司瑶晨. 黏结剂种类对铝酸镧涂层材料性能的影响. 耐火材料. 2022(02): 123-126 .
    4. 张志辉,李明. 316L钢表面超音速火焰喷涂Fe基粉末涂层显微结构及摩擦性能分析. 粉末冶金技术. 2022(04): 351-355+361 . 本站查看
    5. 蔡浩,龚关,梁雅琪,仇秀梅,刘可. 莫来石在醇基铸造涂料中的试验研究. 中国新技术新产品. 2022(21): 26-28+145 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1486) PDF downloads (79) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return