Citation: | LI Zeng-feng, TAN Ping, SHEN Lei, ZHAO Shao-yang, WANG Li-qing, LI Ai-jun, YIN Jing-ou. Preparation and characterization of Ti‒1Al‒8V‒5Fe alloy powders[J]. Powder Metallurgy Technology, 2022, 40(6): 564-569. DOI: 10.19591/j.cnki.cn11-1974/tf.2021010014 |
The spherical Ti‒1Al‒8V‒5Fe alloy (Ti185) powders used for the additive manufacturing were prepared by plasma rotating electrode atomization (PREP), using the high temperature forged Ti185 rods with the diameter of 100 mm as the electrode bar, using the Ti185 alloy ingots without “βspots” prepared by vacuum consumable arc melting as the raw materials. The properties of the Ti185 powders were characterized by vibration sieving, scanning electron microscope (SEM), and X-ray diffraction (XRD). In the results, the particle size distribution of the Ti185 powders is wide, mainly in the range of 44~150 μm. The powder yield with the particle size less than 44 μm is 11.6%. The oxygen content of the powders (mass fraction) is less than 0.14%. The powder fluidity with the particle size less than 150 μm is 24.79 [s∙(50 g)‒1], the bulk density is 2.79g∙cm‒3, and the tap density is 2.99 g∙cm‒3. The Ti185 powders are composed of β phase due to the rapidly cooling during the PREP process. The powders exhibit the high sphericity without the satellite powders. The powders with the particle size larger than 124 μm show the cellular dendrite structure with the small amount of rough and uneven micro pores on the surface of powders. The internal organization of the powders shows the characteristics of multi-point nucleation with the cellular structure and coarse grains after the rapid solidification. With the decrease of particle size and the increase of cooling rate, the cellular dendrite structure on the surface of powders decreases gradually, showing the smooth surface for the powder particle size less than 44 μm. Meanwhile the internal organization of the powders shows a radial growth trend and significant refinement.
[1] |
赵永庆. 国内外钛合金研究的发展现状及趋势. 中国材料进展, 2010, 29(5): 1
Zhao Y Q. Current situation and development trend of titanium alloys. Mater China, 2010, 29(5): 1
|
[2] |
Froes F H, Friedrich H, Kiese J, et al. Titanium in the family automobile: The cost challenge. JOM, 2004, 56(2): 40 DOI: 10.1007/s11837-004-0144-0
|
[3] |
Wand K. The use of titanium for medical applications in the LSA. Mater Sci Eng A, 1996, 213(1-2): 134 DOI: 10.1016/0921-5093(96)10243-4
|
[4] |
张国庆, 刘玉峰, 刘娜, 等. TiAl金属间化合物粉末冶金工艺研究进展. 航空制造技术, 2019, 62(22): 38 DOI: 10.16080/j.issn1671-833x.2019.22.038
Zhang G Q, Liu Y F, Liu N, et al. Progress in powder metallurgy TiAl-based intermetallics. Aeronaut Manuf Technol, 2019, 62(22): 38 DOI: 10.16080/j.issn1671-833x.2019.22.038
|
[5] |
Chiaki O. Development of steel plates by intensive use of TMCP and direct quenching processes. ISIJ Int, 2001, 419(6): 542
|
[6] |
Welsch G, Boyer R, Collings E W. Materials Properties Handbook: Titanium Alloys. Ohio: ASM International, 1994
|
[7] |
高思宇, 刘平, 王春明, 等. 粉末冶金法低成本制备Ti‒1Al‒8V‒5Fe合金的组织和性能. 粉末冶金技术, 2014, 32(6): 427
Gao S Y, Liu P, Wang C M, et al. Microstructure and mechanical properties of low-cost Ti‒1Al‒8V‒5Fe alloy using PM method. Powder Metall Technol, 2014, 32(6): 427
|
[8] |
李烨, 王利卿, 王建, 等. Ti‒1Al‒8V‒5Fe合金的组织和力学性能研究. 热加工工艺, 2019, 48(20): 122
Li Y, Wang L Q, Wang J, et al. Study on microstructure and mechanical properties of Ti‒1Al‒8V‒5Fe alloy. Hot Working Technol, 2019, 48(20): 122
|
[9] |
宗贵升. 3D打印思维与实践. 粉末冶金工业, 2015, 25(6): 1 DOI: 10.13228/j.boyuan.issn1006-6543.20150095
Zong G S. 3D printing is changing the way we think. Powder Metall Ind, 2015, 25(6): 1 DOI: 10.13228/j.boyuan.issn1006-6543.20150095
|
[10] |
Devaraj A, Joshi V, Srivastava A, et al. A low-cost hierarchical nanostructures beta-titanium alloy with high strength. Nat Commun, 2016, 7: 11176 DOI: 10.1038/ncomms11176
|
[11] |
Moxson V S, Senkov O, Froes F, et al. Production and applications of low cost titanium powder products. Int J Powder Metall, 1998, 34(5): 127
|
[12] |
孙世杰. 增材制造方法生产的TiAl合金零件将被应用于飞机发动机涡轮叶片. 粉末冶金工业, 2015, 25(1): 65
Sun S J. TiAl alloy parts produced by additive manufacturing method will be used in turbine blade of aircraft engine. Powder Metall Ind, 2015, 25(1): 65
|
[13] |
杨鑫, 奚正平, 刘咏, 等. 等离子旋转电极法制备钛铝粉末性能表征. 稀有金属材料与工程, 2010, 39(12): 2251
Yang X, Xi Z P, Liu Y, et al. Characterization of TiAl powders prepared by plasma rotating electrode processing. Rare Met Mater Eng, 2010, 39(12): 2251
|
[14] |
贺卫卫, 汤慧萍, 刘咏, 等. PREP法制备高温TiAl预合金粉末及其致密化坯体组织研究. 稀有金属材料与工程, 2014, 43(11): 2768
He W W, Tang H P, Liu Y, et al. Preparation of high-temperature TiAl pre-alloyed powder by PREP and its densification microstructure research. Rare Met Mater Eng, 2014, 43(11): 2768
|
[15] |
赵少阳, 王利卿, 谈萍, 等. VIGA-CC法制备球形Ti‒35.8Al‒18.4Nb合金粉末及其性能研究. 粉末冶金技术, 2020, 38(6): 443
Zhao S Y, Wang L Q, Tan P, et al. Preparation and properties of spherical Ti‒35.8Al‒18.4Nb alloy powders by VIGA-CC method. Powder Metall Technol, 2020, 38(6): 443
|
[1] | LI Yue, ZHAO Dingguo, SU Xinlei, LIU Yan, WANG Shuhuan. Viscosity model of CoCrFeMnNi high entropy alloys[J]. Powder Metallurgy Technology, 2024, 42(4): 411-417. DOI: 10.19591/j.cnki.cn11-1974/tf.2022080008 |
[2] | LIU Ganhua, TANG Naifu, WANG Qi. Accurate modeling of equal-distance spiral bevel gear and the trial production by metal powder injection molding process[J]. Powder Metallurgy Technology, 2024, 42(2): 207-214. DOI: 10.19591/j.cnki.cn11-1974/tf.2021100012 |
[3] | SUN Shi-min, HUANG Shang-yu, ZHOU Meng-cheng, LEI Yu, WANG Bin. Modified Drucker-Prager Cap model of Ti-6Al-4V powders for cold die compaction[J]. Powder Metallurgy Technology, 2018, 36(4): 261-269. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.04.004 |
[4] | Dai Yu, Huang Baiyun, Liu Yong, Yang Jiangao. Mathematical model and analysis of atomization process with lineal instability[J]. Powder Metallurgy Technology, 2009, 27(5): 331-335. |
[5] | Research on Sintering Model of ZAO Ceramics[J]. Powder Metallurgy Technology, 2002, 20(5): 267-270. DOI: 10.3321/j.issn:1001-3784.2002.05.002 |
[6] | Sun Jianfei, Shen Jun, Li Zhenyu, Jia Jun, Li Qingchun. HEAT TRANSFER AND SOLIDIFICATION BEHAVIOR OF SUPERALLOY DROPLETS DURING SPRAY FORMING[J]. Powder Metallurgy Technology, 2000, 18(2): 92-97. |
[7] | Cheng Yuanfang, Guo Shiju, Lai Heyi. COUPLING MODEL OF MULTIPLE SINTERING MECHANISMS FOR THE INITIAL STAGE SINTERING[J]. Powder Metallurgy Technology, 1999, 17(4): 257-263. |
[8] | Cheng Yuanfang, Guo Shiju, Lai Heyi. THEORETICAL MODELLING PROGRESS——1.THE COMPARISON OF THE UNIT MODEL FOR THE FIRST STAGE OF GRAVITY SINTERING[J]. Powder Metallurgy Technology, 1999, 17(3): 216-221. |
[9] | Yang Liushuan, Pang Lijun, Liu Yongzhang, Yang Gencang, Zhou Yaohe. PHYSICAL MODEL AND MATHEMATICAL ANALYSES ON THERMAL PROCESS OF SPRAY-DEPOSITED ZA27 ALLOY DROPLETS[J]. Powder Metallurgy Technology, 1995, 13(3): 163-169. |
[10] | Zhang Ji, Li Shikui. MATHEMATICAL ANALYSIS ON TRANSVERSE RUPTURE STRENGTH OF YG15 HARDMETALS[J]. Powder Metallurgy Technology, 1993, 11(1): 15-18. |
1. |
崔雷,麻洪秋,赵刚,孟令兵,关立东,冯雪峰. 改进型组合雾化工艺制备球形FeSiCr粉末. 粉末冶金技术. 2024(05): 481-488 .
![]() |