AdvancedSearch
LI Jing, LI Hao, LIU Fei, LIU Shao-jun. Effect of Ca/Zr co-substitution on microstructure and microwave dielectric characteristics of CaSmAlO4-based ceramics[J]. Powder Metallurgy Technology, 2021, 39(2): 127-134. DOI: 10.19591/j.cnki.cn11-1974/tf.2021020002
Citation: LI Jing, LI Hao, LIU Fei, LIU Shao-jun. Effect of Ca/Zr co-substitution on microstructure and microwave dielectric characteristics of CaSmAlO4-based ceramics[J]. Powder Metallurgy Technology, 2021, 39(2): 127-134. DOI: 10.19591/j.cnki.cn11-1974/tf.2021020002

Effect of Ca/Zr co-substitution on microstructure and microwave dielectric characteristics of CaSmAlO4-based ceramics

More Information
  • Corresponding author:

    LIU Shao-jun, E-mail: liumatthew@csu.edu.cn

  • Received Date: March 08, 2021
  • Available Online: March 26, 2021
  • Ca1+xSm1xAl1xZrxO4 (x=0.1, 0.2, 0.3, 0.4) microwave ceramics in the lamellar perovskite structure were fabricated by the traditional solid-phase synthesis method. The effect of the Ca/Zr co-substitution on the crystal structure, microstructure, and dielectric characteristics of the microwave ceramics were investigated by X-ray diffraction (XRD), Raman spectra, electron backscatter diffraction (EBSD), energy dispersive spectroscopy (EDS), and vector network analysis (VNA). In the results, the cell parameters (a, c), cell volume (Vcell), and theoretical polarizability (αtheo) increase with the increase of x, leading to the increase of the dielectric constant (εr) and resonant frequency temperature coefficient (τf); meanwhile, a moderate amount of CaO secondary phases can improve the quality factor (Q×f). Ca1.2Sm0.8Al0.8Zr0.2O4 (x=0.2) ceramics show the excellent microwave performance as εr=20.16, Q×f=72489, and τf = −3.46×10−6·℃−1.
  • [1]
    Cruickshank D. 1-2 GHz dielectrics and ferrites: overview and perspectives. J Eur Ceram Soc, 2003, 23(14): 2721 DOI: 10.1016/S0955-2219(03)00145-6
    [2]
    Deeva Yu A, Chupakhina T I, Melnikova N V, et al. Dielectric properties of new oxide phases Ln0.65Sr1.35Co0.5Ti0.5O4 (Ln = La, Nd, Pr) with the K2NiF4-type structure. Ceram Int, 2020, 46(10): 15305 DOI: 10.1016/j.ceramint.2020.03.071
    [3]
    金彪, 徐卓越, 汪潇, 等. 不同方式引入CuO制备低温烧结(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7陶瓷. 粉末冶金技术, 2018, 36(5): 386

    Jin B, Xu Z Y, Wang X, et al. Preparation of low-temperature sintered (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7 ceramics doped by CuO in different methods. Powder Metall Technol, 2018, 36(5): 386
    [4]
    韩伟丹, 董桂霞, 吕易楠, 等. MnO2掺杂BaTi4O9陶瓷微波介电性能研究. 粉末冶金技术, 2017, 35(6): 411

    Han W D, Dong G X, Lü Y N, et al. Study on microwave dielectric properties of BaTi4O9 ceramics doped by MnO2. Powder Metall Technol, 2017, 35(6): 411
    [5]
    董丽, 董桂霞, 张茜. MgTiO3-CaTiO3系微波陶瓷介电性能的研究. 粉末冶金技术, 2015, 33(4): 243

    Dong L, Dong G X, Zhang X. Research on microwave dielectric properties of MgTiO3-CaTiO3 system ceramic. Powder Metall Technol, 2015, 33(4): 243
    [6]
    Sattler S W, Gentili F, Teschl R, et al. Emerging technologies and concepts for 5G applications—A. making additive manufactured ceramic microwave filters ready for 5G // 2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA). Hsinchu, 2018: 17913025
    [7]
    Cui X J, Liu L, Li H, et al. Influences of Mg and Mn doping on structure, B-site ordering and microwave dielectric properties of Ba(Co1/3Nb2/3)O3 ceramics. Mater Res Express, 2020, 7(1): 016306 DOI: 10.1088/2053-1591/ab61a3
    [8]
    李媛媛, 舒景坤, 董桂霞, 等. 氧化铝基微波陶瓷材料的制备及性能研究. 粉末冶金技术, 2014, 32(3): 178

    Li Y Y, Shu J K, Dong G X, et al. Preparation and investigation on properties of the Al2O3-based microwave ceramic materials. Powder Metall Technol, 2014, 32(3): 178
    [9]
    Mao M M, Li L, Zeng Y W, et al. Characterization of microstructures and defects in SrSmAlO4-based microwave dielectric ceramics by TEM. Ferroelectrics, 2014, 470(1): 117 DOI: 10.1080/00150193.2014.922849
    [10]
    Shannon R D, Oswald R A, Parise J B, et al. Dielectric constants and crystal structures of CaYAlO4, CaNdAlO4, and SrLaAlO4, and deviations from the oxide additivity rule. J Solid State Chem, 1992, 98(1): 90 DOI: 10.1016/0022-4596(92)90073-5
    [11]
    Fan X C, Chen X M. Effects of Ca/Ti cosubstitution upon microwave dielectric characteristics of CaSmAlO4 ceramics. J Am Ceram Soc, 2009, 92(2): 433 DOI: 10.1111/j.1551-2916.2009.02931.x
    [12]
    Tian Y F, Tang Y, Xiao K, et al. Crystal structure, Raman spectroscopy and microwave dielectric properties of Li1+xZnNbO4 (0≤x≤0.05) ceramics. J Alloys Compd, 2019, 777: 1 DOI: 10.1016/j.jallcom.2018.08.244
    [13]
    Chupakhina T I, Melnikova N V, Kadyrova N I, et al. Synthesis, structure and dielectric properties of new ceramics with K2NiF4-type structure. J Eur Ceram Soc, 2019, 39(13): 3722 DOI: 10.1016/j.jeurceramsoc.2019.05.018
    [14]
    Wang Z X, Yuan C L, Zhu B H, et al. Complex impedance spectroscopy of perovskite microwave dielectric ceramics with high dielectric constant. J Am Ceram Soc, 2019, 102(4): 1852
    [15]
    Pajaczkowska A, Gloubokov A. Synthesis, growth and characterization of tetragonal ABCO4 crystals. Prog Cryst Growth Charact Mater, 1998, 36(1-2): 123 DOI: 10.1016/S0960-8974(98)00006-0
    [16]
    Fan X C, Mao M M, Chen X M. Microstructures and microwave dielectric properties of the CaSmAlO4-based ceramics. J Am Ceram Soc, 2008, 91(9): 2917 DOI: 10.1111/j.1551-2916.2008.02560.x
    [17]
    Mao M M, Fan X C, Chen X M. Effect of A-site ionic radius on the structure and microwave dielectric characteristics of Sr1+xSm1−xAl1−xTixO4 ceramics. Int J Appl Ceram Technol, 2010, 7(1): 156
    [18]
    Yan H, Chen G Y, Li L, et al. Microwave dielectric properties of SrLa[Ga1+x(Mg0.5Ti0.5)x]O4 and SrLa[Ga1+x(Zn0.5Ti0.5)x]O4 (x = 0.28) ceramics. Int J Appl Ceram Technol, 2020, 17(2): 790 DOI: 10.1111/ijac.13395
    [19]
    Dhanya J, Sarika P V, Naveenraj R, et al. Structure and microwave dielectric properties of ALn4(MoO4)7 (A = Ba, Sr, Ca, Ln = La, Pr, Nd, and Sm) ceramics. Int J Appl Ceram Technol, 2019, 16(3): 1150 DOI: 10.1111/ijac.13178
    [20]
    Wise P L, Reaney I M, Lee W E, et al. Structure–microwave property relations in (SrxCa(1−x))n+1TinO3n+1. J Eur Ceram Soc, 2001, 21(10-11): 1723 DOI: 10.1016/S0955-2219(01)00102-9
    [21]
    Magrez A, Cochet M, Joubert O, et al. High internal stresses in Sr1−xLa1+xAl1−xMgxO4 solid solution (0≤x≤0.7) characterized by infrared and Raman spectroscopies coupled with crystal structure refinement. Chem Mater, 2001, 13(11): 3893 DOI: 10.1021/cm001209e
    [22]
    亢静锐, 董桂霞, 韩伟丹, 等. 烧结助剂中CaO质量分数及烧结温度对氧化铝基微波陶瓷性能的影响. 粉末冶金技术, 2018, 36(1): 9

    Kang J R, Dong G X, Han W D, et al. Influence of CaO content by mass in sintering aid and sintering temperature on the properties of Al2O3-based microwave ceramic materials. Powder Metall Technol, 2018, 36(1): 9
    [23]
    Ren G R, Zhu J Y, Li L, et al. SrLa(R0.5Ti0.5)O4 (R=Mg, Zn) microwave dielectric ceramics with complex K2NiF4-type layered perovskite structure. J Am Ceram Soc, 2017, 100(6): 2582 DOI: 10.1111/jace.14644
    [24]
    Zhang C, Yi L, Chen X M. Improvement of microwave dielectric characteristics in SrNdAlO4 ceramics by Ca-substitution. Ceram Int, 2014, 40(4): 6077 DOI: 10.1016/j.ceramint.2013.11.058
    [25]
    Berreman D W, Unterwald F C. Adjusting poles and zeros of dielectric dispersion to fit reststrahlen of PrCl3 and LaCl3. Phys Rev, 1968, 174(3): 791 DOI: 10.1103/PhysRev.174.791
    [26]
    Hadjiev V G, Cardona M, Ivanov I, et al. Optical phonons probe of the SrLaAlO4 crystal structure. J Alloys Compd, 1997, 251(1-2): 7 DOI: 10.1016/S0925-8388(96)02759-4
    [27]
    Rao C N R, Ganguly P, Singh K K, et al. A comparative study of the magnetic and electrical properties of perovskite oxides and the corresponding two-dimensional oxides of K2NiF4 structure. J Solid State Chem, 1988, 72(1): 14 DOI: 10.1016/0022-4596(88)90003-5
  • Related Articles

    [1]Enhancing Corrosion Resistance of Laser Powder Bed Fusion CoCrNi Medium-Entropy Alloy through Microstructure Regulation[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2025030018
    [2]NI Xiaoqing, ZHANG Liang, WU Wenheng, KONG Decheng, WEN Ying, WANG Li, DONG Chaofang. Effect of electrochemical polishing on surface quality and corrosion resistance of Ti6Al4V crowns fabricated by selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(6): 528-535, 542. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110011
    [3]GUO Yang, HU Li-ming. Effect of graphene oxide on the corrosion resistance and electromagnetic propertiese of FeSiAl alloy powders[J]. Powder Metallurgy Technology, 2021, 39(6): 520-525. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030029
    [4]MIAO Zhen-wang, ZHU Fu-wen, LIU Qi. Study on microstructure and corrosion resistance of CoCrFeNiCuTix high-entropy alloy[J]. Powder Metallurgy Technology, 2020, 38(1): 10-17. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.002
    [5]Liu Yuzhen, Sun Qinxing. Corrosion resistance for ODS-CLAM steel in a static Pb-Bi environment[J]. Powder Metallurgy Technology, 2014, 32(6): 431-436.
    [6]Fang Jing, Chen Gang, Si Zhaoxia. Effects of hot galvanizing on the corrosion-resistance of iron-based powder metallurgy parts[J]. Powder Metallurgy Technology, 2008, 26(6): 452-454,458.
    [7]Corrosion Resistance of Ti(C,N)-based Cermet for Surgical Cutting Tools[J]. Powder Metallurgy Technology, 2002, 20(2): 82-85. DOI: 10.3321/j.issn:1001-3784.2002.02.005
    [8]Ye Minghui, Zhao Zhongmin, Du Xinkang, Xin Wentong, Wang Jianjiang. INVESTIGATION ON CORROSION-RESISTANCE OF DOUBLE LINED CERAMIC COMPOSITE PIPES PRODUCED BY GRAVITATIONAL SEPARATION SHS PROCESS[J]. Powder Metallurgy Technology, 2000, 18(2): 106-110.
    [9]Lu Zhong, Xing Yinghua, Zhao Lianzhong. THERMOCOUPLE CAPSULE MATERIAL WITH CORROSION RESISTANCE FOR ZINC MELT[J]. Powder Metallurgy Technology, 1986, 4(2): 95-98.
    [10]Li Baosheng. CORROSION RESISTANCE OF TUNGSTEN CARBIDE BASE HARD METAL[J]. Powder Metallurgy Technology, 1984, 2(2): 8-14.
  • Cited by

    Periodical cited type(1)

    1. 钟韬,郭荣臻,林晓川,柳龙婷,王佳鑫,徐志强,郭世柏. 等离子烧结工艺对WC/Cr_3C_2/La_2O_3刀具材料力学性能的影响. 粉末冶金技术. 2024(06): 582-588 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (443) PDF downloads (27) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return