AdvancedSearch
DUAN Lin-lin, FENG Peng-fa, DANG Xiao-ming. Effect of Y2O3–CeO2 two-phase dispersion strengthening on the grain size and tensile properties of Mo alloys[J]. Powder Metallurgy Technology, 2021, 39(3): 223-228. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030006
Citation: DUAN Lin-lin, FENG Peng-fa, DANG Xiao-ming. Effect of Y2O3–CeO2 two-phase dispersion strengthening on the grain size and tensile properties of Mo alloys[J]. Powder Metallurgy Technology, 2021, 39(3): 223-228. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030006

Effect of Y2O3–CeO2 two-phase dispersion strengthening on the grain size and tensile properties of Mo alloys

More Information
  • Corresponding author:

    DUAN Lin-lin, E-mail: duanll99@sina.com

  • Received Date: March 01, 2021
  • Available Online: May 23, 2021
  • Mo–Y–Ce alloys doped by yttrium oxide (Y2O3) and cerium oxide (CeO2) in different mass fraction were prepared by the nanometer spray doping technology and the powder metallurgy method. The two-phase dispersion strengthening effect of Y2O3 and CeO2 on the grain size and mechanical properties of Mo alloys at room temperature was studied. The results show that Y2O3 restrains the abnormal growth of the individual grains and has the effect of precipitation strengthening. The mechanical properties of the Mo–Y alloy wires are closely related to the doping amount of Y2O3. When the mass fraction of Y2O3 is 0.60%, the tensile strength and yield strength of the ϕ1.8-mm Mo–Y alloy wires reach 1050 and 923 MPa, respectively. Because of the semi-coherent relationship between CeO2 and the Mo matrix, CeO2 has the good toughening effect. When the mass fraction of CeO2 is 0.06%~0.08%, the grain size of the sintered Mo–Y–Ce alloys is smaller than 10 μm, the tensile strength and yield strength of the ϕ1.8-mm Mo–Y–Ce alloy wires are 1130 and 1018 MPa, respectively, the elongation reaches 28.5%. The tensile strength of ϕ0.18-mm Mo–Y–Ce alloy wires reaches 2510 MPa. The optimal composition of the Mo–Y–Ce two-phase dispersion strengthening Mo alloys is Mo–0.6Y2O3–(0.06~0.08)CeO2.
  • [1]
    陈艳芳, 谢敬佩, 王爱琴, 等. 钼及钼合金溅射靶材的研究现状与发展趋势. 粉末冶金技术, 2018, 36(5): 393

    Chen Y F, Xie J P, Wang A Q, et al. Research status and development trend of molybdenum and molybdenum alloy sputtering target materials. Powder Metall Technol, 2018, 36(5): 393
    [2]
    徐克玷. 钼的材料科学与工程. 北京: 冶金工业出版社, 2014

    Xu K D. The Material Science and Engineering of Molybdenum. Beijing: Metallurgical Industry Press, 2014
    [3]
    Hu B L, Wang K S, Hu P, et al. Fracture behavior of the La-doped molybdenum-titanium-zirconium alloy. Mater Sci Eng A, 2019, 759: 167 DOI: 10.1016/j.msea.2019.05.031
    [4]
    Iorio L E, Bewlay B P, Larsen M. Analysis of AKS- and lanthanum-doped molybdenum wire. Int J Refract Met Hard Mater, 2006, 24(4): 306 DOI: 10.1016/j.ijrmhm.2005.10.004
    [5]
    郭磊, 宋瑞, 淡新国, 等. 稀土钼合金制备工艺及强韧化机理研究现状. 中国钼业, 2017, 41(2): 45

    Guo L, Song R, Dan X G, et al. Present research status of preparation technology of rare earth molybdenum alloys and strengthening-toughening mechanism. China Molybdenum Ind, 2017, 41(2): 45
    [6]
    赵虎. 钼及钼合金烧结技术研究及发展. 粉末冶金技术, 2019, 37(5): 382

    Zhao H. Research and development on the sintering techniques of molybdenum and molybdenum alloys. Powder Metall Technol, 2019, 37(5): 382
    [7]
    Zhang G J, Liu G, Sun Y J, et al. Microstructure and strengthening mechanisms of molybdenum alloy wires doped with lanthanum oxide particles. Int J Refract Met Hard Mater, 2009, 27(1): 173 DOI: 10.1016/j.ijrmhm.2008.06.007
    [8]
    王新刚, 韩强, 赵宝华. 稀土高温钼板室温塑韧性研究. 稀有金属, 2003, 27(1): 80 DOI: 10.3969/j.issn.0258-7076.2003.01.017

    Wang X G, Han Q, Zhao B H. Study on the room-temperature plasticity and toughness of rare earth oxide-doped molybdenum sheet. Chin J Rare Met, 2003, 27(1): 80 DOI: 10.3969/j.issn.0258-7076.2003.01.017
    [9]
    Zhang G J, Sun Y J, Zuo C. Microstructure and mechanical properties of multi-components rare earth oxide-doped molybdenum alloys. Mater Sci Eng A, 2006, 483-484: 350
    [10]
    何斌衡, 杨海林, 阮建明. Y2O3含量对钼合金组织和性能的影响. 粉末冶金材料科学与工程, 2012, 17(2): 234 DOI: 10.3969/j.issn.1673-0224.2012.02.016

    He B H, Yang H L, Ruan J M. Effect of Y2O3 content on microstructure and properties of molybdenum alloys. Mater Sci Eng Powder Metall, 2012, 17(2): 234 DOI: 10.3969/j.issn.1673-0224.2012.02.016
    [11]
    陈大军, 吴护林, 李忠盛, 等. 高含量La2O3/Y2O3对钼合金微观组织与性能的影响. 粉末冶金技术, 2016, 34(1): 26 DOI: 10.3969/j.issn.1001-3784.2016.01.005

    Chen D J, Wu H L, Li Z S, et al. Effects of the high content La2O3/Y2O3 on microstructure and mechanical properties of Mo-alloy. Powder Metall Technol, 2016, 34(1): 26 DOI: 10.3969/j.issn.1001-3784.2016.01.005
    [12]
    李娜, 徐流杰, 窦彩虹, 等. 氧化钇掺杂对钼合金高温力学性能的影响. 稀有金属, 2020, 44(6): 578

    Li N, Xu L J, Dou C H, et al. High temperature mechanical properties of molybdenum alloys doped yttrium oxide. Chin J Rare Met, 2020, 44(6): 578
    [13]
    杨秦莉, 冯鹏发, 赵虎, 等. Ce在钼合金中的存在形态及其对力学性能的影响. 中国钼业, 2011, 35(3): 44 DOI: 10.3969/j.issn.1006-2602.2011.03.011

    Yang Q L, Feng P F, Zhao H, et al. Occurrence status of Ce element in Mo alloy and its effects on the mechanical properties of Mo alloy. China Molybdenum Ind, 2011, 35(3): 44 DOI: 10.3969/j.issn.1006-2602.2011.03.011
    [14]
    杨涤心, 王攀, 魏世忠, 等. 稀土掺杂钼制品的组织和性能研究. 稀土, 2011, 32(6): 62 DOI: 10.3969/j.issn.1004-0277.2011.06.013

    Yang D X, Wang P, Wei S Z, et al. Study on structures and properties of Mo products doped with rare earth. Chin Rare Earths, 2011, 32(6): 62 DOI: 10.3969/j.issn.1004-0277.2011.06.013
    [15]
    董帝, 王承阳. 钼合金制备工艺的研究进展. 粉末冶金技术, 2017, 35(4): 304

    Dong D, Wang C Y. Research progress on preparation technology of molybdenum alloy. Powder Metall Technol, 2017, 35(4): 304
    [16]
    冯鹏发, 杨秦莉, 赵虎, 等. 纳米第二相颗粒掺杂钼合金粉末及制品的制备方法: 中国专利, CN103273071A, 2013-09-04

    Feng P F, Yang Q L, Zhao H, et al. Nano Second Phase Particles Doped with Molybdenum Alloy Powder and Preparation Method of Products: China Patent, CN103273071A, 2013-09-04
    [17]
    冯鹏发, 杨秦莉, 党晓明, 等. 钼合金纳米喷雾掺杂工艺研究. 稀有金属, 2017, 41(1): 57

    Feng P F, Yang Q L, Dang X M, et al. Nanosized powder spray doping technology of molybdenum alloys. Chin J Rare Met, 2017, 41(1): 57

Catalog

    Article Metrics

    Article views (677) PDF downloads (38) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return