AdvancedSearch
FENG En-hao, WANG Xiao-qi, HAN Xiao, ZHOU Zhan-wei, KANG Nan, WANG Qing-zheng, ZHAO Chun-ling, LIN Xin. Process parameters optimization of Ti6Al4V fabricated by selective laser melting[J]. Powder Metallurgy Technology, 2022, 40(6): 555-563. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040008
Citation: FENG En-hao, WANG Xiao-qi, HAN Xiao, ZHOU Zhan-wei, KANG Nan, WANG Qing-zheng, ZHAO Chun-ling, LIN Xin. Process parameters optimization of Ti6Al4V fabricated by selective laser melting[J]. Powder Metallurgy Technology, 2022, 40(6): 555-563. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040008

Process parameters optimization of Ti6Al4V fabricated by selective laser melting

More Information
  • Corresponding author:

    HAN Xiao, E-mail: hanxiao1998@126.com (HAN X)

    KANG Nan, nan.kang@nwpu.edu.cn (KANG N)

  • Received Date: April 10, 2021
  • Accepted Date: October 11, 2021
  • Available Online: October 11, 2021
  • The metallurgical defects, such as pores, unmelted powders, and cracks, always appear in the processed components prepared by selective laser melting (SLM). The numerous researches focus on minimizing the inherent defects, but there are few studies on the effect of process parameters on these defects. The influence of process parameters on the relative density, surface roughness, and tensile properties of the selective laser melted Ti6Al4V were studied in this paper. The results show that, the low laser power, high scanning speed, and high layer thickness cause the insufficient melting and the balling effects. In the case of Ti6Al4V, the optimized process parameters are considered as the laser power of 200 W, scanning speed of 500 mm/s, layer thickness 30 μm, and hatch distance of 105 μm, with which the processed sample presents the ultimate tensile strength as 1077 MPa and the yield strength as 907 MPa.

  • [1]
    Edwards P, Ramulu M. Fatigue performance evaluation of selective laser melted Ti‒6A1‒4V. Mater Sci Eng A, 2014, 598: 327 DOI: 10.1016/j.msea.2014.01.041
    [2]
    赵瑶, 贺跃辉, 江垚, 等. 粉末冶金Ti6Al4V合金的研究. 粉末冶金技术, 2009, 27(2): 108

    Zhao Y, He Y H, Jiang Y, et al. Research on preparation of Ti6Al4V alloy using powder metallurgy. Powder Metall Technol, 2009, 27(2): 108
    [3]
    Sterling A J, Torries B, Shamsaei N, et al. Fatigue behavior and failure mechanisms of direct laser deposited Ti‒6Al‒4V. Mater Sci Eng A, 2016, 655: 100 DOI: 10.1016/j.msea.2015.12.026
    [4]
    Miranda G, Araújo A, Bartolomeu F, et al. Design of Ti6Al4V‒HA composites produced by hot pressing for biomedical applications. Mater Des, 2016, 108: 488 DOI: 10.1016/j.matdes.2016.07.023
    [5]
    Azarniya A, Colera X G, Mirzaali M J, et al. Additive manufacturing of Ti–6Al–4V parts through laser metal deposition (LMD): Process, microstructure, and mechanical properties. J Alloys Compd, 2019, 804: 163 DOI: 10.1016/j.jallcom.2019.04.255
    [6]
    Liu Q, Wang Y, Zheng H, et al. Microstructure and mechanical properties of LMD-SLM hybrid forming Ti6Al4V alloy. Mater Sci Eng A, 2016, 660: 24 DOI: 10.1016/j.msea.2016.02.069
    [7]
    Wen Y, Zhang B, Narayan R L, et al. Laser powder bed fusion of compositionally graded CoCrMo-Inconel 718. Addit Manuf, 2021, 40: 101926
    [8]
    Yu Z, Xu Z, Guo Y, et al. Study on properties of SLM-NiTi shape memory alloy under the same energy density. J Mater Res Technol, 2021, 13: 241 DOI: 10.1016/j.jmrt.2021.04.058
    [9]
    Ponnusamy P, Sharma B, Masood S H, et al. A study of tensile behavior of SLM processed 17-4 PH stainless steel. Mater Today Proc, 2021, 45(6): 4531
    [10]
    Vastola G, Pei Q X, Zhang Y W. Predictive model for porosity in powder-bed fusion additive manufacturing at high beam energy regime. Addit Manuf, 2018, 22: 817
    [11]
    Gu D D, Shen Y F. Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater Des, 2009, 30(8): 2903 DOI: 10.1016/j.matdes.2009.01.013
    [12]
    Murr L E, Quinones S A, Gaytan S M, et al. Microstructure and mechanical behavior of Ti‒6Al‒4V produced by rapid-layer manufacturing for biomedical applications. J Mech Behav Biomed Mater, 2009, 2(1): 20 DOI: 10.1016/j.jmbbm.2008.05.004
    [13]
    Krakhmalev P, Fredriksson G, Yadroitsava I, et al. Deformation behavior and microstructure of Ti‒6Al‒4V manufactured by SLM. Physics Procedia, 2016, 83: 778 DOI: 10.1016/j.phpro.2016.08.080
    [14]
    Yang Y, Li X, Khonsari M M, et al. On enhancing surface wear resistance via rotating grains during selective laser melting. Addit Manuf, 2020, 36: 101583
    [15]
    Shi X S, Yan C, Feng W W, et al. Effect of high layer thickness on surface quality and defect behavior of Ti‒6Al‒4V fabricated by selective laser melting. Opt Laser Technol, 2020, 132: 106471 DOI: 10.1016/j.optlastec.2020.106471
    [16]
    Gong H J, Rafi K, Gu H F, et al. Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Addit Manuf, 2014, 1-4: 87
    [17]
    Prashanth K G, Scudino S, Maity T, et al. Is the energy density a reliable parameter for materials synthesis by selective laser melting? Mater Res Lett, 2017, 5(6): 386
    [18]
    Cheng B, Shrestha S, Chou K. Stress and deformation evaluations of scanning strategy effect in selective laser melting. Addit Manuf, 2016, 12: 240
    [19]
    倪晓晴, 孔德成, 温莹, 等. 3D打印金属材料中孔隙率的影响因素和改善方法. 粉末冶金技术, 2019, 37(3): 163

    Ni X Q, Kong D C, Wen Y, et al. Influence factors and improvement methods on the porosity of 3D printing metal materials. Powder Metall Technol, 2019, 37(3): 163
    [20]
    Shen Y F, Gu D D, Pan Y F. Balling process in selective laser sintering 316 stainless steel powder. Key Eng Mater, 2006, 315-316: 357 DOI: 10.4028/www.scientific.net/KEM.315-316.357
    [21]
    Deckers J, Meyers S, Kruth J P, et al. Direct selective laser sintering/melting of high density alumina powder layers at elevated temperatures. Physics Procedia, 2014, 56: 117 DOI: 10.1016/j.phpro.2014.08.154
    [22]
    Yadroitsev I, Smurov I. Surface morphology in selective laser melting of metal powders. Physics Procedia, 2011, 12: 264 DOI: 10.1016/j.phpro.2011.03.034
    [23]
    Eberhard A, Michael K. Analysis and optimisation of vertical surface roughness in micro selective laser melting. Surf Topogr Metrol Prop, 2015, 3(3): 034007 DOI: 10.1088/2051-672X/3/3/034007
    [24]
    Spierings A B, Herres N, Levy G. Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. Rapid Prototyp J, 2011, 17(3): 195 DOI: 10.1108/13552541111124770
    [25]
    Chen Z E, Wu X H, Tomus D, et al. Surface roughness of selective laser melted Ti‒6Al‒4V alloy components. Addit Manuf, 2018, 21: 91
    [26]
    Kang N, Coniglio N, Cao Y, et al. Intrinsic heat treatment induced graded surficial microstructure and tribological properties of selective laser melted titanium. J Tribol, 2021, 143(5): 1
    [27]
    Aziz I A, Gabbitas B, Stanford M. Microstructure and tensile strength of rapid manufacturing parts. Adv Mater Res, 2014, 903: 114 DOI: 10.4028/www.scientific.net/AMR.903.114
    [28]
    Shi X Z, Ma S Y, Liu C M, et al. Selective laser melting-wire arc additive manufacturing hybrid fabrication of Ti‒6Al‒4V alloy: Microstructure and mechanical properties. Mater Sci Eng A, 2017, 684: 196 DOI: 10.1016/j.msea.2016.12.065
    [29]
    Bhardwaj A, Toshniwal K, Wahed M A, et al. Microstructural and SEM analysis on thin sheets of Ti6Al4V alloy subjected to biaxial and uniaxial tensile tests. Mater Today Proc, 2018, 5(2): 3729 DOI: 10.1016/j.matpr.2017.11.625
  • Related Articles

    [1]Effect of solution treatment on the microstructure and properties of UNS S32750 super duplex stainless steel prepared by selective laser melting[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024110001
    [2]CAI Xiaoping, YIN Jinnan, ZHANG Zhipeng, FENG Peizhong. Reaction behavior, microstructure, and mechanical properties of FeAl-316 stainless steel joints[J]. Powder Metallurgy Technology, 2024, 42(2): 107-114. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110009
    [3]Effects of Deoxidizing Elements Ti and La on the Microstructure and Mechanical Properties of Additively Manufactured Martensitic Stainless Steel[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024060018
    [4]HU Jianbin, LIU Xiaojing, WANG Zhiyong, SHANG Feng, HE Yiqiang, YANG Jianming. Microstructure and properties of 316L/430 duplex stainless steels processed by selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(4): 302-306. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090007
    [5]LI Jie, LIU Wen-sheng, CAI Qing-shan, DUAN You-teng, ZHU Wen-tan, MA Yun-zhu. Effect of powder characteristics on microstructure and properties of 30CrMnSiNi2A steels[J]. Powder Metallurgy Technology, 2022, 40(5): 441-450. DOI: 10.19591/j.cnki.cn11-1974/tf.2022030015
    [6]WEI Zi-chen, ZHANG Lin, QIN Ming-li, LI Xing-yu, QUE Zhong-you, QU Xuan-hui. Effect of powder size on microstructure and mechanical properties of rhenium[J]. Powder Metallurgy Technology, 2021, 39(3): 196-202. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030014
    [7]WANG Xin-feng, HE Wei-wei, ZHU Ji-lei, XIANG Chang-shu. Microstructure and mechanical properties of Fe–Co–Ni based superalloy prepared by hot isostatic pressing[J]. Powder Metallurgy Technology, 2020, 38(5): 371-376, 390. DOI: 10.19591/j.cnki.cn11-1974/tf.2019060006
    [8]ZHANG Peng, WANG Zhi-yong, SHANG Feng, LI Hua-qiang, HE Yi-qiang. Effect of two phase mass ratio on the microstructure and mechanical properties of duplex stainless steel fabricated by powder metallurgy[J]. Powder Metallurgy Technology, 2020, 38(4): 269-274. DOI: 10.19591/j.cnki.cn11-1974/tf.2019060003
    [9]SUN Lu, ZHANG Ji-feng, QIU Tian-xu, SHEN Xiao-ping. Effect of forging temperature on microstructure and mechanical properties of powder hot-forged alloy contained molybdenum[J]. Powder Metallurgy Technology, 2020, 38(3): 174-182. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.002
    [10]Tong Guoquan, Wang Erde, He Shaoyuan. THE INFLUENCE OF THE BINDER COMPOSITION ON THE MICROSTRUCTURES AND MECHANICAL PROPERTIES OF WC-20(Fe/Co/Ni) CEMENTED CARBIDES[J]. Powder Metallurgy Technology, 1995, 13(4): 243-248.
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return