Citation: | WANG Qian-yu, QIN Ming-li, WU Hao-yang, JIA Bao-rui, QU Xuan-hui. Research status and development trend of new nanocrystalline cemented carbides[J]. Powder Metallurgy Technology, 2022, 40(4): 362-375. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040010 |
Nanocrystalline cemented carbides have been widely used in the electronics information, automobile manufacturing, aerospace, national defense, and military industry due to the excellent performance. The development of nanocrystalline cemented carbides in recent years was summarized in this paper, including new binder phase nanocrystalline cemented carbides, binderless nanocrystalline cemented carbide, gradient nanocrystalline cemented carbides, and coating nanocrystalline cemented carbides. The development potential and research focus of the nanocrystalline cemented carbides in each field were prospected, providing the new ideas for the modern cemented carbide materials and technology.
[1] |
Norgren S, García J, Blomqvist A, et al. Trends in the P/M hard metal industry. Int J Refract Met Hard Mater, 2015, 48: 31 DOI: 10.1016/j.ijrmhm.2014.07.007
|
[2] |
Konyashin I, Klyachko L I. History of cemented carbides in the Soviet Union. Int J Refract Met Hard Mater, 2015, 49: 9 DOI: 10.1016/j.ijrmhm.2014.08.011
|
[3] |
羊求民, 羊建高, 苏伟, 等. 纳米/超细晶WC–Co类硬质合金的研究进展. 稀有金属与硬质合金, 2018, 46(1): 76
Yang Q M, Yang J G, Su W, et al. Research progress of nano/ultrafine WC–Co cemented carbides. Rare Met Cement Carb, 2018, 46(1): 76
|
[4] |
黄伯云, 韦伟峰, 李松林, 等. 现代粉末冶金材料与技术进展. 中国有色金属学报, 2019, 29(9): 1917 DOI: 10.19476/j.ysxb.1004.0609.2019.09.08
Huang B Y, Wei W F, Li S L. Development of modern powder metallurgy materials and technology. Chin J Nonferrous Met, 2019, 29(9): 1917 DOI: 10.19476/j.ysxb.1004.0609.2019.09.08
|
[5] |
李萌, 弓满锋, 张程煜, 等. 超细、纳米晶WC–Co硬质合金烧结技术的研究现状. 材料导报, 2020, 34(8): 15138
Li M, Gong M F, Zhang C Y, et al. Research progress of sintering technique of ultrafine and nano WC–Co cemented carbides. Mater Rep, 2020, 34(8): 15138
|
[6] |
胡耀斌, 庞前列, 彭毅萍. 我国硬质合金产业的发展现状及展望. 超硬材料工程, 2017, 29(4): 55 DOI: 10.3969/j.issn.1673-1433.2017.04.013
Hu Y B, Pang Q L, Peng Y P. The development status and outlook of cemented carbide industry in China. Superhard Mater Eng, 2017, 29(4): 55 DOI: 10.3969/j.issn.1673-1433.2017.04.013
|
[7] |
Becher P F. Microstructural design of toughened ceramics. J Am Ceram Soc, 1991, 74(2): 255 DOI: 10.1111/j.1151-2916.1991.tb06872.x
|
[8] |
熊建超, 邹芹, 李艳国, 等. WC基硬质合金刀具材料研究进展. 金刚石与磨料磨具工程, 2019, 39(2): 95
Xiong J C, Zhou Q, Li Y G, et al. Research progress of WC-based cemented carbide tool materials. Diamond Abras Eng, 2019, 39(2): 95
|
[9] |
祁志旭, 陈兴媚. 硬质合金刀具研究进展. 材料研究与应用, 2019, 13(4): 347 DOI: 10.3969/j.issn.1673-9981.2019.04.015
Qi Z X, Chen X M. Research progress of cemented carbide cutting tools. Mater Res Appl, 2019, 13(4): 347 DOI: 10.3969/j.issn.1673-9981.2019.04.015
|
[10] |
吴冲浒, 聂洪波, 肖满斗, 等. 纳米材料在硬质合金中的应用. 中国材料进展, 2014, 33(1): 39 DOI: 10.7502/j.issn.1674-3962.2014.01.07
Wu C X, Nie H B, Xiao M D, et al. Application of nanomaterials on hardmetals. Mater China, 2014, 33(1): 39 DOI: 10.7502/j.issn.1674-3962.2014.01.07
|
[11] |
陶国林, 蒋显全, 黄靖. 硬质合金刀具材料发展现状与趋势. 金属功能材料, 2011, 18(3): 79
Tao G L, Jiang X Q, Huang J. Research status and developing trend of cemented carbide tool. Metall Funct Mater, 2011, 18(3): 79
|
[12] |
徐伟. 抑制剂对超细晶硬质合金性能影响概述. 世界有色金属, 2019(7): 260 DOI: 10.3969/j.issn.1002-5065.2019.07.154
Xu W. An overview of the effect of inhibitors on properties of superfine cemented carbide. World Nonferrous Met, 2019(7): 260 DOI: 10.3969/j.issn.1002-5065.2019.07.154
|
[13] |
徐涛. 硬质合金高端产品及新材料发展趋势分析. 硬质合金, 2011, 28(6): 395 DOI: 10.3969/j.issn.1003-7292.2011.06.010
Xu T. Development trend analysis of advanced products and new materials of cemented carbide. Cement Carb, 2011, 28(6): 395 DOI: 10.3969/j.issn.1003-7292.2011.06.010
|
[14] |
吴其山, 张守全, 陈成艺, 等. 匀相纳米晶硬质合金工业化制造技术. 厦门: 厦门金鹭特种合金有限公司, 2017
Wu Q S, Zhang S Q, Chen C Y, et al. Industrialized manufacturing technology of homogeneous nanocrystalline cemented carbide. Xiamen: Xiamen Golden Egret Special Alloy Co. , Ltd. , 2017
|
[15] |
García J, Collado Ciprés V, Blomqvist A, et al. Cemented carbide microstructures: a review. Int J Refract Met Hard Mater, 2019, 80: 40 DOI: 10.1016/j.ijrmhm.2018.12.004
|
[16] |
龙坚战, 陆必志, 易茂中, 等. 新型粘结相硬质合金的研究进展. 硬质合金, 2015, 32(3): 204
Long J Z, Lu B Z, Yi M Z, et al. Research progress on cemented carbide with novel binders. Cement Carb, 2015, 32(3): 204
|
[17] |
Sun J L, Zhao J, Gong F, et al. Development and application of WC-based alloys bonded with alternative binder phase. Crit Rev Solid State Mater Sci, 2019, 44(3): 211 DOI: 10.1080/10408436.2018.1483320
|
[18] |
Wittmann B, Schubert W D, Lux B. Hard materials poster: Hardmetals with iron-based binder // European PM Conference Proceedings. Lausanne, 2002: 303
|
[19] |
Zhao Z Y, Liu J W, Tang H G, et al. Investigation on the mechanical properties of WC–Fe–Cu hard alloys. J Alloys Compd, 2015, 632: 729 DOI: 10.1016/j.jallcom.2015.01.300
|
[20] |
Ghasali E, Ebadzadeh T, Alizadeh M, et al. Mechanical and microstructural properties of WC-based cermets: A comparative study on the effect of Ni and Mo binder phases. Ceram Int, 2018, 44(2): 2283 DOI: 10.1016/j.ceramint.2017.10.189
|
[21] |
Shon I J. Effect of Al on sintering and mechanical properties of WC–Al composites. Ceram Int, 2016, 42(15): 17884 DOI: 10.1016/j.ceramint.2016.07.050
|
[22] |
Zhou P F, Xiao D H, Yuan T C. Comparison between ultrafine-grained WC–Co and WC–HEA-cemented carbides. Powder Metall, 2017, 60(1): 1 DOI: 10.1080/00325899.2016.1260903
|
[23] |
Shon I J. Rapid consolidation of nanostructured WC–FeAl hard composites by high-frequency induction heating and its mechanical properties. Int J Refract Met Hard Mater, 2016, 61: 185 DOI: 10.1016/j.ijrmhm.2016.09.013
|
[24] |
Li X Q, Zhang M N, Zheng D H, et al. The oxidation behavior of the WC–10wt. % Ni3Al composite fabricated by spark plasma sintering. J Alloys Compd, 2015, 629: 148
|
[25] |
Kwak B W, Song J H, Kim B S, et al. Mechanical properties and rapid sintering of nanostructured WC and WC–TiAl3 hard materials by the pulsed current activated heating. Int J Refract Met Hard Mater, 2016, 54: 244 DOI: 10.1016/j.ijrmhm.2015.08.003
|
[26] |
Ren X Y, Peng Z J, Peng Y, et al. Ultrafine binderless WC-based cemented carbides with varied amounts of AlN nano-powder fabricated by spark plasma sintering. Int J Refract Met Hard Mater, 2013, 41: 308 DOI: 10.1016/j.ijrmhm.2013.05.002
|
[27] |
Schröter K. Sintered Cemented Carbide and Production Process: Gremany Patent, 420689. 1925-10-30
|
[28] |
Chang S H, Chang M H, Huang K T. Study on the sintered characteristics and properties of nanostructured WC–15 wt%(Fe–Ni–Co) and WC–15 wt% Co hard metal alloys. J Alloys Compd, 2015, 649: 89 DOI: 10.1016/j.jallcom.2015.07.119
|
[29] |
Zhao Z Y, Zhu D G, Gao Y, et al. Influence of Ni and ZrO2 contents on sintering and mechanical properties of WC–2wt. %ZrO2–1wt. %Ni composites. Ceram Int, 2019, 45(9): 11241
|
[30] |
Kim H C, Shon I J, Yoon J K, et al. Comparison of sintering behavior and mechanical properties between WC–8Co and WC–8Ni hard materials produced by high-frequency induction heating sintering. Met Mater Int, 2006, 12(2): 141 DOI: 10.1007/BF03027470
|
[31] |
Chang S H, Chen S L. Characterization and properties of sintered WC–Co and WC–Ni–Fe hard metal alloys. J Alloys Compd, 2014, 585: 407 DOI: 10.1016/j.jallcom.2013.09.188
|
[32] |
Karimi H, Hadi M, Ebrahimzadeh I, et al. High-temperature oxidation behaviour of WC–FeAl composite fabricated by spark plasma sintering. Ceram Int, 2018, 44(14): 17147 DOI: 10.1016/j.ceramint.2018.06.168
|
[33] |
Zhang M N, Dupuy A D, Li J M, et al. High temperature compressive properties and microstructure of WC–Ni3Al cermets prepared by spark plasma sintering. Vacuum, 2020, 175: 109281 DOI: 10.1016/j.vacuum.2020.109281
|
[34] |
Jung G N, Kim B S, Yoon J K, et al. Properties and rapid sintering of nanostructured WC and WC–TiAl hard materials by the pulsed current activated heating. J Ceram Process Res, 2016, 17(4): 295
|
[35] |
周腾, 夏铁锋, 高立新, 等. 超细无粘结相WC基陶瓷的研究进展. 硬质合金, 2014, 31(2): 120
Zhou T, Xia T F, Gao L X, et al. Technical progress of binderless WC-based nanostructured cemented carbide. Cement Carb, 2014, 31(2): 120
|
[36] |
张太全, 聂洪波, 李文强, 等. 无粘结相硬质合金研究进展与应用. 中国钨业, 2018, 33(5): 64 DOI: 10.3969/j.issn.1009-0622.2018.05.011
Zhang T Q, Nie H B, Li W Q, et al. Research progress and application of binderless cemented carbides. China Tungsten Ind, 2018, 33(5): 64 DOI: 10.3969/j.issn.1009-0622.2018.05.011
|
[37] |
刘璐超, 娄丽, 吴胜男, 等. 无粘结剂硬质合金研究进展与制备. 材料开发与应用, 2015, 30(4): 93
Liu L C, Lou L, Wu S N, et al. Research progress and preparation of binderless cemented carbide. Dev Appl Mater, 2015, 30(4): 93
|
[38] |
胡涛, 胡忠举, 郭世柏, 等. 无粘结相WC基硬质合金刀具材料的研究现状与前景. 工具技术, 2019, 53(2): 7 DOI: 10.3969/j.issn.1000-7008.2019.02.002
Hu T, Hu Z J, Guo S B, et al. Research progress of WC-based cemented carbide cutting tool materials without bonding phase. Tool Eng, 2019, 53(2): 7 DOI: 10.3969/j.issn.1000-7008.2019.02.002
|
[39] |
刘超. 无粘结相硬质合金的发展及展望. 中国材料进展, 2016, 35(8): 622
Liu C. The development and prospect of binderless carbide. Mater China, 2016, 35(8): 622
|
[40] |
El-Eskandarany M S. Fabrication of nanocrystalline WC and nanocomposite WC–MgO refractory materials at room temperature. J Alloys Compd, 2000, 296(1-2): 175 DOI: 10.1016/S0925-8388(99)00508-3
|
[41] |
罗锴, 陈强, 蔡一湘. 放电等离子烧结制备超细碳化钨材料. 材料研究与应用, 2010, 4(4): 534 DOI: 10.3969/j.issn.1673-9981.2010.04.069
Luo K, Chen Q, Cai Y X. Ultrafine binderless tungsten carbide prepared by spark plasma sintering process. Mater Res Appl, 2010, 4(4): 534 DOI: 10.3969/j.issn.1673-9981.2010.04.069
|
[42] |
Kim H C, Shon I J, Yoon J K, et al. Consolidation of ultra fine WC and WC–Co hard materials by pulsed current activated sintering and its mechanical properties. Int J Refract Met Hard Mater, 2007, 25(1): 46 DOI: 10.1016/j.ijrmhm.2005.11.004
|
[43] |
Kim H C, Shon I J, Yoon J K, et al. One step synthesis and densification of ultra-fine WC by high-frequency induction combustion. Int J Refract Met Hard Mater, 2006, 24(3): 202 DOI: 10.1016/j.ijrmhm.2005.04.004
|
[44] |
Kim H C, Kim D K, Woo K D, et al. Consolidation of binderless WC–TiC by high frequency induction heating sintering. Int J Refract Met Hard Mater, 2008, 26(1): 48 DOI: 10.1016/j.ijrmhm.2007.01.006
|
[45] |
Poetschke J, Richter V, Michaelis A. Influence of small additions of MeC on properties of binderless tungsten carbide // Euro PM 2014 International Conference and Exhibition. Salzburg, 2014
|
[46] |
Chao Y J, Liu J. Study of WC ceramic tool material by SiC whisker toughening. Rare Met Cement Carb, 2005, 33(4): 13
|
[47] |
Huang S G, Vanmeensel K, Van der Biest O, et al. Binderless WC and WC–VC materials obtained by pulsed electric current sintering. Int J Refract Met Hard Mater, 2008, 26(1): 41 DOI: 10.1016/j.ijrmhm.2007.01.002
|
[48] |
Nino A, Nakaibayashi Y, Sugiyama S, et al. Effect of Mo2C addition on the microstructures and mechanical properties of WC–SiC ceramics. Int J Refract Met Hard Mater, 2017, 64: 35 DOI: 10.1016/j.ijrmhm.2016.12.018
|
[49] |
Sun J L, Zhao J, Huang Z F, et al. A review on binderless tungsten carbide: development and application. Nano-Micro Lett, 2020, 12(1): 162 DOI: 10.1007/s40820-020-00505-2
|
[50] |
Ahmad I, Islam M, Subhani T, et al. Toughness enhancement in graphene nanoplatelet/SiC reinforced Al2O3 ceramic hybrid nanocomposites. Nanotechnology, 2016, 27(42): 425704 DOI: 10.1088/0957-4484/27/42/425704
|
[51] |
Zheng D H, Li X Q, Li Y Y, et al. ZrO2(3Y) toughened WC composites prepared by spark plasma sintering. J Alloys Compd, 2013, 572: 62 DOI: 10.1016/j.jallcom.2013.03.259
|
[52] |
Wang J F, Zuo D W, Zhu L, et al. Effects and influence of Y2O3 addition on the microstructure and mechanical properties of binderless tungsten carbide fabricated by spark plasma sintering. Int J Refract Met Hard Mater, 2018, 71: 167 DOI: 10.1016/j.ijrmhm.2017.11.016
|
[53] |
Ren X Y, Peng Z J, Wang C B, et al. Influence of nano-sized La2O3 addition on the sintering behavior and mechanical properties of WC–La2O3 composites. Ceram Int, 2015, 41(10): 14811 DOI: 10.1016/j.ceramint.2015.08.002
|
[54] |
Fan B W, Zhu S G, Ding H, et al. Influence of MgO whisker addition on microstructures and mechanical properties of WC–MgO composite. Mater Chem Phys, 2019, 238: 121907 DOI: 10.1016/j.matchemphys.2019.121907
|
[55] |
Petzow G, Kaysser W A. Sintering with additives. Dordrecht: Springer, 1990
|
[56] |
Nino A, Izu Y, Sekine T, et al. Effects of ZrC and SiC addition on the microstructures and mechanical properties of binderless WC. Int J Refract Met Hard Mater, 2017, 69: 259 DOI: 10.1016/j.ijrmhm.2017.09.002
|
[57] |
El-Eskandarany M S. Fabrication and characterizations of new nanocomposite WC/Al2O3 materials by room temperature ball milling and subsequent consolidation. J Alloys Compd, 2005, 391(1-2): 228 DOI: 10.1016/j.jallcom.2004.08.064
|
[58] |
王明超, 赵志伟, 杨德青, 等. 超细(纳米)硬质合金的制备研究进展. 材料导报, 2015, 29(增刊1): 26
Wang M C, Zhao Z W, Yang D Q, et al. Research progress in preparation of ultrafine (nano-structured) cemented carbide. Mater Rev, 2015, 29(Suppl 1): 26
|
[59] |
Poetschke J, Richter V, Holke R. Influence and effectivity of VC and Cr3C2 grain growth inhibitors on sintering of binderless tungsten carbide. Int J Refract Met Hard Mater, 2012, 31: 218 DOI: 10.1016/j.ijrmhm.2011.11.006
|
[60] |
Kim H C, Kim D K, Ko I Y, et al. Sintering behavior and mechanical properties of binderless WC–TiC produced by pulsed current activated sintering. J Ceram Process Res, 2007, 8(2): 91
|
[61] |
Engqvist H, Botton G A, Axén N, et al. Microstructure and abrasive wear of binderless carbides. J Am Ceram Soc, 2000, 83(10): 2491
|
[62] |
Taya M, Hayashi S, Kobayashi A S, et al. Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress. J Am Ceram Soc, 1990, 73(5): 1382 DOI: 10.1111/j.1151-2916.1990.tb05209.x
|
[63] |
Radajewski M, Schimpf C, Krüger L. Study of processing routes for WC–MgO composites with varying MgO contents consolidated by FAST/SPS. J Eur Ceram Soc, 2017, 37(5): 2031 DOI: 10.1016/j.jeurceramsoc.2017.01.005
|
[64] |
Basu B. Toughening of yttria-stabilised tetragonal zirconia ceramics. Int Mater Rev, 2005, 50(4): 239 DOI: 10.1179/174328005X41113
|
[65] |
Becher P F, Hsueh C H, Angelini P, et al. Toughening behavior in whisker-reinforced ceramic matrix composites. J Am Ceram Soc, 1988, 71(12): 1050 DOI: 10.1111/j.1151-2916.1988.tb05791.x
|
[66] |
Li Y Y, Zheng D H, Li X Q, et al. Cr3C2 and VC doped WC–Si3N4 composites prepared by spark plasma sintering. Int J Refract Met Hard Mater, 2013, 41: 540 DOI: 10.1016/j.ijrmhm.2013.07.004
|
[67] |
Ouyang C X, Zhu S G, Dong W W, et al. Microstructure and mechanical properties of hot-pressed WC–MgO composites with Cr3C2 or VC addition. Int J Refract Met Hard Mater, 2013, 41: 41 DOI: 10.1016/j.ijrmhm.2013.01.015
|
[68] |
Zhang X X, Zhu S G, Shi T Y, et al. Preparation, mechanical and tribological properties of WC–Al2O3 composite doped with graphene platelets. Ceram Int, 2020, 46(8): 10457 DOI: 10.1016/j.ceramint.2020.01.045
|
[69] |
史留勇, 张守全, 黄继华. WC–Co功能梯度硬质合金研究进展. 粉末冶金技术, 2010, 28(4): 305
Shi L Y, Zhang S Q, Huang J H. Advances information of WC–Co functionally graded hard metals. Powder Metall Technol, 2010, 28(4): 305
|
[70] |
董定乾, 向新, 顾金宝, 等. 梯度硬质合金制备技术及研究现状. 硬质合金, 2019, 36(5): 392
Dong D Q, Xiang X, Gu J B. The fabrication technique and research status of gradient cemented carbide. Cement Carb, 2019, 36(5): 392
|
[71] |
Sun J L, Zhao J, Chen M J, et al. Determination of microstructure and mechanical properties of functionally graded WC–TiC–Al2O3–GNPs micro-nano composite tool materials via two-step sintering. Ceram Int, 2017, 43(12): 9276 DOI: 10.1016/j.ceramint.2017.04.086
|
[72] |
Scuor N, Lucchini E, Maschio S, et al. Wear mechanisms and residual stresses in alumina-based laminated cutting tools. Wear, 2005, 258(9): 1372 DOI: 10.1016/j.wear.2004.10.004
|
[73] |
许智峰, 周向葵, 王凯, 等. SPS预烧结制备超细晶梯度硬质合金. 东北大学学报(自然科学版), 2018, 39(11): 1593 DOI: 10.12068/j.issn.1005-3026.2018.11.015
Xu Z F, Zhou X K, Wang K, et al. Fabrication of ultrafine-grained gradient cemented carbide by SPS pre-sintered method. J Northeastern Univ Nat Sci, 2018, 39(11): 1593 DOI: 10.12068/j.issn.1005-3026.2018.11.015
|
[74] |
Konyashin I, Ries B, Lachmann F, et al. Gradient WC–Co hardmetals: Theory and practice. Int J Refract Met Hard Mater, 2013, 36: 10 DOI: 10.1016/j.ijrmhm.2011.12.010
|
[75] |
赵时璐, 张钧, 刘常升. 涂层刀具的切削性能及其应用动态. 材料导报, 2008, 22(11): 62 DOI: 10.3321/j.issn:1005-023X.2008.11.015
Zhao S L, Zhang J, Liu C S. Cutting performance and application of coated cutting tools. Mater Rev, 2008, 22(11): 62 DOI: 10.3321/j.issn:1005-023X.2008.11.015
|
[76] |
王海滨, 宋晓艳, 刘雪梅, 等. WC–Co复合粉末的原位合成及于硬质合金涂层制备中的应用. 表面技术, 2016, 45(9): 10
Wang H B, Song X Y, Liu X M, et al. Fabrication of cemented carbide coating with in-situ synthesized WC–Co composite powder. Surf Technol, 2016, 45(9): 10
|
[77] |
Tillmann W, Stangier D, Hagen L, et al. Influence of the WC grain size on the properties of PVD/HVOF duplex coatings. Surf Coat Technol, 2017, 328: 326 DOI: 10.1016/j.surfcoat.2017.08.064
|
[78] |
贾佐诚, 陈飞雄, 吴诚. 硬质合金新进展. 粉末冶金工业, 2010, 20(3): 52 DOI: 10.3969/j.issn.1006-6543.2010.03.011
Jia Z C, Chen F X, Wu C. Progress in cemented carbide field. Powder Metall Ind, 2010, 20(3): 52 DOI: 10.3969/j.issn.1006-6543.2010.03.011
|
[79] |
尹超, 毛善文. CVD金刚石涂层硬质合金刀具研究进展. 硬质合金, 2016, 33(4): 275
Yin C, Mao S W. Research progress of CVD diamond coating for cemented carbide cutting tool. Cement Carb, 2016, 33(4): 275
|
[80] |
Polini R, Barletta M, Cristofanilli G. Wear resistance of nano-and micro-crystalline diamond coatings onto WC–Co with Cr/CrN interlayers. Thin Solid Films, 2010, 519(5): 1629 DOI: 10.1016/j.tsf.2010.07.128
|
[1] | CHEN Bing-wei, YANG Xue-feng, ZHU Zhen-dong, LI Zheng-xin. Surface morphology characterization of diamond etched by CeO2[J]. Powder Metallurgy Technology, 2022, 40(4): 318-324. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090018 |
[2] | LIN Bing-tao, HE Jun, LIU Zhong-wei, WANG Cheng-yang, LI Ming, SUN Xiao-xia, ZHOU Shu-qiu. Fracture morphology and microstructure analysis of Mo–La nozzles for solid rocket motor[J]. Powder Metallurgy Technology, 2022, 40(1): 80-85. DOI: 10.19591/j.cnki.cn11-1974/tf.2021070003 |
[3] | YANG Wen-tao, XUE Bing, DAI Yong-fu, PU Chuan-jin, XIAO Ding-jun. Effect of milling time on the particle size distribution and morphology of tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(5): 423-428. DOI: 10.19591/j.cnki.cn11-1974/tf.2020020010 |
[4] | SI Jia-jia, SU Xiao-lei. Preparation of ultrafine spherical nickel powders[J]. Powder Metallurgy Technology, 2021, 39(2): 177-183. DOI: 10.19591/j.cnki.cn11-1974/tf.2019090003 |
[5] | SUN Tian-hao, HAO Su-ju, JIANG Wu-feng, ZHANG Yu-zhu. Preparation and morphology analysis of nano-sized iron oxide[J]. Powder Metallurgy Technology, 2021, 39(1): 76-80. DOI: 10.19591/j.cnki.cn11-1974/tf.2019080008 |
[6] | ZHANG Bao-hong, TANG Liang-liang. Study on the erosion morphology of W-Ni-Sr electrode[J]. Powder Metallurgy Technology, 2020, 38(4): 289-294. DOI: 10.19591/j.cnki.cn11-1974/tf.2019050007 |
[7] | LUO Xiao-qiang, HAN Yong-jun, FENG Yun-xiao, YU Hao, YU Chun-bo, ZHAO Li-heng. Effect of bucket temperature on grain morphology of semi-solid melt A356 by micro fused-casting[J]. Powder Metallurgy Technology, 2019, 37(3): 170-174. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.002 |
[8] | Hydrothermal synthesis of micro-copper powders with special morphology[J]. Powder Metallurgy Technology, 2010, 28(3): 200-203. |
[9] | Du Huiling, Wang Jianzhong, Chen Danfeng, Cang Daqiang. Effects of pulsed electromagnetic field on morphology of cobalt oxalate powders[J]. Powder Metallurgy Technology, 2010, 28(2): 96-100. |
[10] | Xu Tianhan, Wang Danghui. Effect of inner diameter of delivery tube end of atomizer on morphology and size distribution of free-lead solder powder[J]. Powder Metallurgy Technology, 2009, 27(3): 197-202. |
1. |
王哲昊,吕绪明. 等离子喷涂技术在工程陶瓷涂层制备中的应用现状及展望. 材料导报. 2024(11): 52-61 .
![]() | |
2. |
陈开旺,张鹏林,李树旺,牛显明,胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能. 材料研究学报. 2023(01): 39-46 .
![]() | |
3. |
张一帆,王曲,王刚,刘鹏程,张琪,司瑶晨. 黏结剂种类对铝酸镧涂层材料性能的影响. 耐火材料. 2022(02): 123-126 .
![]() | |
4. |
张志辉,李明. 316L钢表面超音速火焰喷涂Fe基粉末涂层显微结构及摩擦性能分析. 粉末冶金技术. 2022(04): 351-355+361 .
![]() | |
5. |
蔡浩,龚关,梁雅琪,仇秀梅,刘可. 莫来石在醇基铸造涂料中的试验研究. 中国新技术新产品. 2022(21): 26-28+145 .
![]() |