Citation: | HAN Jiayu, WANG Qiang, LONG Jiayi, ZHAO Weiguo, WANG Li, FENG Rui, JIN Bo, HU Boliang, HU Ping, WANG Kuaishe. Research progress on preparation technology of molybdenum disilicide coating[J]. Powder Metallurgy Technology, 2024, 42(6): 674-684. DOI: 10.19591/j.cnki.cn11-1974/tf.2021050006 |
Molybdenum disilicide (MoSi2) coating has the excellent high-temperature oxidation resistance which is widely used as a protective coating of various materials. Based on the current research status of MoSi2 coatings at home and abroad, the preparation methods of MoSi2 coatings, such as plasma spraying, pack cementation, slurry method, molten salt method, magnetron sputtering, chemical vapor deposition, laser cladding method, and spark plasma sintering method, were introduced in detail, and the advantages, differences, and shortcomings of those preparation methods for the MoSi2 coatings were summarized. The improvement and development of the MoSi2 coating preparation process were also prospected.
[1] |
Chen P, Zhu L, Ren X R, et al. Preparation of oxidation protective MoSi2–SiC coating on graphite using recycled waste MoSi2 by one-step spark plasma sintering method. Ceram Int, 2019, 45(17): 22040 DOI: 10.1016/j.ceramint.2019.07.220
|
[2] |
韩晓东. 二硅化钼材料热力学性质的理论与应用研究[学位论文]. 景德镇: 景德镇陶瓷大学, 2016
Han X D. Theoretical and Applied Study on the Thermodynamic Properties of MoSi2 [Dissertation]. Jingdezhen: Jingdezhen Ceramic Institute, 2016
|
[3] |
Yue G, Guo X P, Qiao Y Q, et al. Electrodeposition of Mo/Re duplex layer and preparation of MoSi2/ReSi2/NbSi2 compound coating on Nb–Ti–Si based alloy. Corros Sci, 2019, 153: 283 DOI: 10.1016/j.corsci.2019.03.053
|
[4] |
Fu W B, Dai M J, Wei C B, et al. Magnetron sputtering preparation and properties of SiC/MoSi2 oxidation protective coating for carbon/carbon composites prepared. Rare Met Mater Eng, 2016, 45(10): 2543 DOI: 10.1016/S1875-5372(17)30031-0
|
[5] |
Zhang X L, Xu J, Li S X, et al. In-situ preparation of nano MoSi2–SiC composite by melt infiltration of silicon method. Mater Chem Phys, 2017, 200: 287 DOI: 10.1016/j.matchemphys.2017.05.052
|
[6] |
Wang Y, Wang D Z, Yan J H, et al. Preparation and characterization of molybdenum disilicide coating on molybdenum substrate by air plasma spraying. Appl Surf Sci, 2013, 284: 881 DOI: 10.1016/j.apsusc.2013.08.029
|
[7] |
Fei X A, Niu Y R, Ji H, et al. A comparative study of MoSi2 coatings manufactured by atmospheric and vacuum plasma spray processes. Ceram Int, 2011, 37(3): 813 DOI: 10.1016/j.ceramint.2010.10.018
|
[8] |
Zhang H A, Gu S Y. Preparation and oxidation behavior of MoSi2–CrSi2–Si3N4 composite coating on Mo substrate. Int J Refract Met Hard Mater, 2013, 41: 128 DOI: 10.1016/j.ijrmhm.2013.02.014
|
[9] |
Hou H D, Ning X J, Wang Q S, et al. Preparation of Mo(Si, Al)2 feedstock used for air plasma spraying. Trans Nonferrous Met Soc China, 2016, 26(11): 2939 DOI: 10.1016/S1003-6326(16)64424-2
|
[10] |
Wu H, Li H J, Lei Q, et al. Effect of spraying power on microstructure and bonding strength of MoSi2-based coatings prepared by supersonic plasma spraying. Appl Surf Sci, 2011, 257(13): 5566 DOI: 10.1016/j.apsusc.2011.01.043
|
[11] |
Li X F, Feng J Z, Jiang Y G, et al. Preparation and properties of TaSi2–MoSi2–ZrO2-borosilicate glass coating on porous SiCO ceramic composites for thermal protection. Ceram Int, 2018, 44: 19143 DOI: 10.1016/j.ceramint.2018.06.159
|
[12] |
Yokota H, Kudoh T, Suzuki T. Oxidation resistance of boronized MoSi2. Surf Coat Technol, 2003, 169: 171
|
[13] |
Tao X, Xu X J, Guo L L, et al. MoSi2-borosilicate glass coating on fibrous ceramics prepared by in-situ reaction method for infrared radiation. Mater Des, 2016, 103(Aug.5): 144
|
[14] |
刘诚, 冉丽萍, 周文艳, 等. 熔盐法制备C/C复合材料表面MoSi2–SiC涂层的结构与性能. 粉末冶金材料科学与工程, 2016, 21(2): 347 DOI: 10.3969/j.issn.1673-0224.2016.02.024
Liu C, Ran L P, Zhou W Y, et al. Microstructure and property of MoSi2–SiC coating prepared by molten salt method. Mater Sci Eng Powder Metall, 2016, 21(2): 347 DOI: 10.3969/j.issn.1673-0224.2016.02.024
|
[15] |
高荣发. 水稳等离子喷涂. 材料保护, 1984, 17(1): 1
Gao R F. Water-stable plasma spraying. Mater Prot, 1984, 17(1): 1
|
[16] |
Planche M P, Liao H, Coddet C. Oxidation control in atmospheric plasma spraying coating. Surf Coat Technol, 2007, 202(1): 69 DOI: 10.1016/j.surfcoat.2007.04.053
|
[17] |
Sidky P S, Hocking M G. Review of inorganic coatings and coating processes for reducing wear and corrosion. Br Corros J, 1999, 34(3): 171 DOI: 10.1179/000705999101500815
|
[18] |
Zhuo G Q, Su L F, Jiang K Y, et al. Effect of spraying power on oxidation resistance of MoSi2–ZrB2 coating for Nb–Si based alloy prepared by atmospheric plasma. Materials, 2020, 13: 5060 DOI: 10.3390/ma13225060
|
[19] |
Gu S C, Zhu S Z, Ma Z, et al. Preparation and properties of ZrB2–MoSi2–glass composite powders for plasma sprayed high temperature oxidation resistance coating on C/SiC composites. Powder Technol, 2019, 345: 544 DOI: 10.1016/j.powtec.2019.01.044
|
[20] |
Yan J H, Xu J J, Rafi-ud-din, et al. Preparation of agglomerated powders for air plasma spraying MoSi2 coating. Ceram Int, 2015, 41(9): 10547 DOI: 10.1016/j.ceramint.2015.04.149
|
[21] |
Hu D, Fu Q G, Liu B, et al. Multi-layered structural designs of MoSi2/mullite anti-oxidation coating for SiC-coated C/C composites. Surf Coat Technol, 2021, 409: 2021
|
[22] |
李梅, 田晓东, 王甜甜, 等. 纯钼Cr–Si共渗层的组织及形成机理. 金属热处理, 2016, 41(7): 83
Li M, Tian X D, Wang T T, et al. Microstructure formation and thermodynamic analysis of Cr–Si co-deposition coating on pure Mo. Heat Treat Met, 2016, 41(7): 83
|
[23] |
肖来荣, 蔡志刚, 易丹青, 等. MoSi2涂层的组织结构与高温抗氧化性能. 中国有色金属学报, 2006, 16(6): 1028 DOI: 10.3321/j.issn:1004-0609.2006.06.016
Xiao L R, Cai Z G, Yi D Q, et al. Histology and high-temperature oxidation resistance of molybdenum disilicide coating. Chin J Nonferrous Met, 2006, 16(6): 1028 DOI: 10.3321/j.issn:1004-0609.2006.06.016
|
[24] |
杨涛, 杜继红, 严鹏, 等. 钼网表面MoSi2涂层的制备及其1500 ℃高温抗氧化性能. 材料保护, 2018, 51(3): 37
Yang T, Du J H, Yan P, et al. Preparation of MoSi2 coating on Mo net and evaluation of its oxidation behavior at 1500 ℃. Mater Prot, 2018, 51(3): 37
|
[25] |
曹正, 田晓东, 李宁, 等. Nb–Ti–Si合金表面辉光离子渗Mo/包埋渗Si制备MoSi2涂层的研究. 表面技术, 2015, 44(1): 68
Cao Z, Tian X D, Li N, et al. Preparation of MoSi2 coating on Nb–Ti–Si alloy by glow plasma deposition of Mo/pack cementation of Si. Surf Technol, 2015, 44(1): 68
|
[26] |
Liu S N, Shen H T, Xu J W, et al. Preparation of a tantalum-based MoSi2–Mo coating resistant to ultra-high-temperature thermal shock by a new two-step process. J Mater Sci Technol, 2021, 81: 117 DOI: 10.1016/j.jmst.2020.11.059
|
[27] |
冉丽萍, 易茂中, 蒋建献, 等. 炭/炭复合材料MoSi2/SiC高温抗氧化复合涂层的制备及其结构. 新型炭材料, 2006, 21(3): 231 DOI: 10.3969/j.issn.1007-8827.2006.03.007
Ran L P, Yi M Z, Jiang J X, et al. Preparation and structure of a MoSi2/SiC high temperature anti-oxidative gradient coating for carbon/carbon composites. New Carbon Mater, 2006, 21(3): 231 DOI: 10.3969/j.issn.1007-8827.2006.03.007
|
[28] |
张厚安, 吴艺辉, 古思勇, 等. 钼表面(Mo, W)Si2–Si3N4复合涂层的低温氧化行为研究. 厦门理工学院学报, 2013, 21(3): 1 DOI: 10.3969/j.issn.1673-4432.2013.03.001
Zhang H A, Wu Y H, Gu S Y, et al. Low temperature oxidation behaviors of (Mo, W)Si2–Si3N4 coating on the molybdenum substrate. J Xiamen Univ Technol, 2013, 21(3): 1 DOI: 10.3969/j.issn.1673-4432.2013.03.001
|
[29] |
Zhang H A, Lü J X, Wu Y H, et al. Oxidation behavior of (Mo, W)Si2–Si3N4 composite coating on molybdenum substrate at 1600 ℃. Ceram Int, 2015, 41(10): 14890 DOI: 10.1016/j.ceramint.2015.08.012
|
[30] |
詹磊, 杨克明, 王军霞, 等. 碳保护下钼金属表面MoSi2涂层的可控制备及表征. 中国陶瓷, 2019, 55(8): 23
Zhan L, Yang K M, Wang J X, et al. Controllable preparation and characterization of MoSi2 coating on molybdenum metal surface under carbon protection. China Ceram, 2019, 55(8): 23
|
[31] |
张稳稳, 林涛, 邵慧萍. 料浆法制备Mo表面硅化物涂层的研究. 粉末冶金技术, 2013, 31(1): 18 DOI: 10.3969/j.issn.1001-3784.2013.01.004
Zhang W W, Lin T, Shao H P. Study on the silicide coating on molybdenum by slurry method. Powder Metall Technol, 2013, 31(1): 18 DOI: 10.3969/j.issn.1001-3784.2013.01.004
|
[32] |
闫志巧, 熊翔, 肖鹏, 等. Mo–Si经烧结转变为MoSi2–SiC的过程. 粉末冶金材料科学与工程, 2008, 13(1): 19 DOI: 10.3969/j.issn.1673-0224.2008.01.004
Yan Z Q, Xiong X, Xiao P, et al. MoSi2–SiC formation process by sintering of Mo and Si mixture slurries. Mater Sci Eng Powder Metall, 2008, 13(1): 19 DOI: 10.3969/j.issn.1673-0224.2008.01.004
|
[33] |
Fu Q G, Zhang J P, Zhang Z Z, et al. SiC−MoSi2/ZrO2−MoSi2 coating to protect C/C composites against oxidation. Trans Nonferrous Met Soc China, 2013, 23(7): 2113 DOI: 10.1016/S1003-6326(13)62704-1
|
[34] |
曹俊, 刘伟, 朱鹏飞, 等. 料浆包渗法制备MoSi2高温抗氧化涂层. 表面技术, 2019, 48(1): 69
Cao J, Liu W, Zhu P F, et al. Preparation of MoSi2 high temperature oxidation resistant coating by slurry infiltration method. Surf Technol, 2019, 48(1): 69
|
[35] |
谢能平, 古思勇, 张厚安. 采用熔盐法在钼基体上制备硅化钼涂层的结构. 机械工程材料, 2012, 36(1): 65
Xie N P, Gu S Y, Zhang H A. Structure of molybdenum silicide coating prepared on molybdenum substrate by molten salt method. Mater Mech Eng, 2012, 36(1): 65
|
[36] |
邵红红, 徐涛, 王晓静, 等. 磁控溅射硅钼薄膜的抗氧化性能研究. 功能材料, 2012, 43(15): 2095 DOI: 10.3969/j.issn.1001-9731.2012.15.030
Shao H H, Xu T, Wang X J, et al. Research on oxidation property of Mo–Si thin film by magnetron sputtering. J Funct Mater, 2012, 43(15): 2095 DOI: 10.3969/j.issn.1001-9731.2012.15.030
|
[37] |
信绍广, 张茂国, 朱伟, 等. 气压对磁控溅射硅钼薄膜结构及内应力的影响. 金属世界, 2012(4): 21 DOI: 10.3969/j.issn.1000-6826.2012.04.009
Xin S G, Zhang M G, Zhu W, et al. Effect of air pressure on the microstructure and stress properties of Si/Mo thin films. Met World, 2012(4): 21 DOI: 10.3969/j.issn.1000-6826.2012.04.009
|
[38] |
张茂国, 陈华. 磁控溅射法制备硅钼薄膜及其性能表征. 稀有金属材料与工程, 2005, 34(7): 1158 DOI: 10.3321/j.issn:1002-185X.2005.07.039
Zhang M G, Chen H. Properties of Si/Mo thin films deposited by magnetron sputtering method. Rare Met Mater Eng, 2005, 34(7): 1158 DOI: 10.3321/j.issn:1002-185X.2005.07.039
|
[39] |
李公平, 张小东, 丁宝卫, 等. 载能钼团簇束与单晶硅碰撞室温下合成二硅化钼. 核技术, 2005, 28(3): 221 DOI: 10.3321/j.issn:0253-3219.2005.03.014
Li G P, Zhang X D, Ding B W, et al. Synthesis of MoSi2 by energetic molybdenum cluster beam deposited on monocrystalline silicon at room temperature. Nucl Technol, 2005, 28(3): 221 DOI: 10.3321/j.issn:0253-3219.2005.03.014
|
[40] |
夏立芳, 于伟东, 孙跃. 单晶硅非平衡磁控溅射等离子体基离子注入钼的XPS研究. 真空科学与技术, 2001, 21(3): 190
Xia L F, Yu W D, Sun Y. XPS studies of Mo implanted into single-crystal Si by PBII using UBM sputtering. Chin Vac Sci Technol, 2001, 21(3): 190
|
[41] |
Yoon J K, Kim G H, Byun J Y, et al. Effect of Cl/H input ratio on the growth rate of MoSi2 coatings formed by chemical vapor deposition of Si on Mo substrates from SiCl4–H2 precursor gases. Surf Coat Technol, 2003, 172(2-3): 176 DOI: 10.1016/S0257-8972(03)00428-6
|
[42] |
汪异. 钼基合金高温抗氧化涂层的制备及其性能研究[学位论文]. 长沙: 中南大学, 2014
Wang Y. Preparation and Properties of Mo-Based Alloys Oxidation Resistance Coatings at Elevated Temperature [Dissertation]. Changsha: Central South University, 2014
|
[43] |
吴恒, 李贺军, 王永杰, 等. 低压化学气相沉积MoSi2涂层微观结构及氧化性能. 材料科学与工艺, 2012, 20(1): 26 DOI: 10.11951/j.issn.1005-0299.20120106
Wu H, Li H J, Wang Y J, et al. Microstructures and oxidation resistance of MoSi2 coating prepared by low pressure chemical vapor deposition. Mater Sci Technol, 2012, 20(1): 26 DOI: 10.11951/j.issn.1005-0299.20120106
|
[44] |
Choy K L. Chemical vapour deposition of coatings. Prog Mater Sci, 2003, 48(2): 57 DOI: 10.1016/S0079-6425(01)00009-3
|
[45] |
Hidouci A, Pelletier J M. Microstructure and mechanical properties of MoSi2 coatings produced by laser processing. Mater Sci Eng A, 1998, 252(1): 17 DOI: 10.1016/S0921-5093(98)00659-5
|
[46] |
王东生, 田宗军, 沈理达, 等. 激光熔覆技术研究现状及其发展. 应用激光, 2012, 32(6): 538 DOI: 10.3788/AL20123206.0538
Wang D S, Tian Z J, Shen L D, et al. Research status and development of laser cladding technology. Appl Laser, 2012, 32(6): 538 DOI: 10.3788/AL20123206.0538
|
[47] |
梁泽芬, 纳仁花, 林小军, 等. 激光熔覆Co基合金/MoSi2复合涂层工艺参数的优化. 材料保护, 2016, 49(10): 72
Liang Z F, Na R H, Lin X J, et al. Optimization of technological parameters of laser cladding Co-based alloy/MoSi2 composite coatings. Mater Prot, 2016, 49(10): 72
|
[48] |
梁泽芬, 杨永萍. 激光熔覆Co基合金/MoSi2复合涂层显微组织分析. 兰州工业高等专科学校学报, 2012, 19(3): 4
Liang Z F, Yang Y P. Microstructure analysis of Co based alloy/MoSi2 compound coating by laser cladding. J Lanzhou Polytech College, 2012, 19(3): 4
|
[49] |
徐子文, 阮中健. 激光熔覆Mo–Si难熔金属硅化物高温涂层的加工工艺、组织与性能. 耐火材料, 2003, 37(1): 34
Xu Z W, Ruan Z J. Processing, microstructure and properties of laser cladding refractory Mo–Si metal silicide high-temperature composite coatings. Refractories, 2003, 37(1): 34
|
[50] |
梁泽芬, 王国宇, 易湘斌, 等. Stellite-6对激光熔覆MoSi2涂层裂纹敏感性的影响. 材料保护, 2017, 50(12): 42
Liang Z F, Wang G Y, Yi X B, et al. Influence of Stellite-6 content on crack sensitivity of MoSi2 coating prepared by laser cladding. Mater Prot, 2017, 50(12): 42
|
[51] |
庄乔乔, 张培磊, 刘晓鹏. 激光熔覆镍基硅化物涂层研究现状. 热加工工艺, 2017, 46(20): 16
Zhuang Q Q, Zhang P L, Liu X P. Research status of Ni-based metal silicide coating fabricated by laser cladding. Hot Work Technol, 2017, 46(20): 16
|
[52] |
张来启, 陈光南. 激光熔覆MoSi2粉末涂层的组织结构和性能. 金属热处理, 2002, 27(11): 10
Zhang L Q, Chen G N. Microstructure and properties of the MoSi2 powder coating clad by laser beam. Heat Treat Met, 2002, 27(11): 10
|
[53] |
杨森, 王三军, 龚涛, 等. 铝合金表面MoSi2/SiC复合涂层的激光熔覆制备. 材料热处理学报, 2007, 28(增刊1): 218
Yang S, Wang S J, Gong T, et al. Fabrication of MoSi2/SiC composite coating on aluminum alloys by laser cladding. Trans Mater Heat Treat, 2007, 28(Suppl 1): 218
|
[54] |
Zhang P L, Liu X P, Lu Y L, et al. Microstructure and wear behavior of Cu–Mo–Si coatings by laser cladding. Appl Surf Sci, 2014, 311: 709 DOI: 10.1016/j.apsusc.2014.05.141
|
[55] |
柯金, 刘秀波, 庄宿国, 等. Ti6Al4V合金激光熔覆NiMoSi复合涂层的高温抗氧化性能. 中国表面工程, 2018, 31(6): 109
Ke J, Liu X B, Zhuang S G, et al. High temperature oxidation resistance of NiMoSi composite coatings on Ti6Al4V alloy by laser cladding. China Surf Eng, 2018, 31(6): 109
|
[56] |
Zhang J B, Yu D M, Liang Z F, et al. Laser cladding functionally graded composition of molybdenum disilicide and Co-based alloy. Appl Mech Mater, 2013, 331: 474 DOI: 10.4028/www.scientific.net/AMM.331.474
|
[57] |
杨胶溪, 王志成, 王欣, 等. 激光熔覆MoSi2复合涂层组织演变与性能研究. 中国激光, 2013, 40(12): 1203004 DOI: 10.3788/CJL201340.1203004
Yang J X, Wang Z C, Wang X, et al. Microstructure and properties of laser cladding MoSi2 composite coating. Chin J Lasers, 2013, 40(12): 1203004 DOI: 10.3788/CJL201340.1203004
|
[58] |
Kuchino J, Kurokawa K, Shibayama T, et al. Effect of microstructure on oxidation resistance of MoSi2 fabricated by spark plasma sintering. Vacuum, 2004, 73(3-4): 623
|
[59] |
Wen S H, Zhou C G, Sha J B. Microstructural evolution and oxidation behaviour of Mo–Si–B coatings on an Nb–16Si–22Ti–7Cr–2Al–2Hf alloy at 1250 ℃ prepared by spark plasma sintering. Surf Coat Technol, 2018, 352: 320 DOI: 10.1016/j.surfcoat.2018.08.027
|
[60] |
Liu W S, Ren X R, Chu H A, et al. Preparation of MoSi2–SiB6 oxidation inhibition coating on graphite by spark plasma sintering method. Surf Coat Technol, 2020, 405: 126511
|
[61] |
Zhu L, Ren X R, Kang X Q, et al. Microstructural characterization and anti-oxidation properties of molybdenum disilicide coating on Niobium by spent MoSi2-based materials. Adv Eng Mater, 2020, 23: 2000691
|
[62] |
Zhu L, Ren X R, Wang G C, et al. Preparation and 1500 ℃ oxidation behavior of crack-free bentonite doped MoSi2 protective coating on molybdenum. Corros Sci, 2021, 184: 109379 DOI: 10.1016/j.corsci.2021.109379
|
[63] |
Zhu L, Ren X R, Wang X H, et al. Microstructure and high-temperature oxidation resistance of MoSi2–ZrO2 composite coatings for Niobium substrate. J Eur Ceram Soc, 2020, 41: 1197
|
[64] |
赵陆翔, 郭喜平, 姜嫄嫄. 铌基合金包埋渗法制备抗氧化硅化物涂层及其组织形成. 中国有色金属学报, 2007, 17(4): 596 DOI: 10.3321/j.issn:1004-0609.2007.04.016
Zhao L X, Guo X P, Jiang Y Y. Preparation and structural formation of oxidation-resistant silicide coatings on Nb-based alloy by pack cementation technique. Chin J Nonferrous Met, 2007, 17(4): 596 DOI: 10.3321/j.issn:1004-0609.2007.04.016
|
[65] |
闫凯, 姚正军, 檀廷佐, 等. 钼基高温合金表面包埋渗法制备渗铝层的组织与性能. 机械工程材料, 2010, 34(9): 64
Yan K, Yao Z J, Tan T Z, et al. Microstructure and properties of aluminized layers on Mo-based superalloy surface by pack cementation technique. Mater Mech Eng, 2010, 34(9): 64
|
[66] |
张旭, 刘洪喜, 张晓伟, 等. 40Cr钢表面激光熔覆金属陶瓷复合涂层的组织和性能. 金属热处理, 2015, 40(5): 39
Zhang X, Liu H X, Zhang X W, et al. Microstructure and properties of laser clad metal ceramic composite coating on 40Cr steel. Heat Treat Met, 2015, 40(5): 39
|