AdvancedSearch
WANG Jie, HUANG Hailiang, ZHANG Hua, ZHANG Shangzhou, ZHOU Xin, JIANG Liang. Microstructure evolution of FGH96 alloys during heat treatment[J]. Powder Metallurgy Technology, 2023, 41(5): 393-401. DOI: 10.19591/j.cnki.cn11-1974/tf.2023050008
Citation: WANG Jie, HUANG Hailiang, ZHANG Hua, ZHANG Shangzhou, ZHOU Xin, JIANG Liang. Microstructure evolution of FGH96 alloys during heat treatment[J]. Powder Metallurgy Technology, 2023, 41(5): 393-401. DOI: 10.19591/j.cnki.cn11-1974/tf.2023050008

Microstructure evolution of FGH96 alloys during heat treatment

More Information
  • Corresponding author:

    HUANG Hailiang, E-mail: huanghailiang894@163.com

  • Received Date: July 27, 2023
  • Accepted Date: July 27, 2023
  • Available Online: July 27, 2023
  • The microstructure evolution of FGH96 alloys during the heat treatment was studied. The effects of solution temperature and holding time on the grain size, γ′ precipitate size, area fraction, and grain distribution were quantified. The influences of γ′ precipitate and strain storage energy on the grain evolution were analyzed. The results show that, the deformed grains containing a large amount of strain storage energy during heat treatment undergo the static recrystallization and refine the grains, while the dynamic recrystallization grains grow. The uniform fine grain structure can be obtained as the two processes are balanced. After the alloy is held at1060 ℃ for 120 min, the distribution of γ′ precipitate size and grain size are more uniform, and the average grain size is 7.37 μm. The area fraction of the γ′ precipitate decreases with the increase of solution temperature and holding time, while the coarsening and splitting of the primary γ′ precipitate during the subsolvus solution make the area fraction and size of the primary γ′ precipitate increase first and then decrease. The inhomogeneous dissolution of γ′ precipitate leads to the rapid growth of the local grains, forming the mixed crystals.

  • [1]
    Osada T, Gu Y F, Nagashima N, et al. Optimum microstructure combination for maximizing tensile strength in a polycrystalline superalloy with a two-phase structure. Acta Mater, 2013, 61(5): 1820 DOI: 10.1016/j.actamat.2012.12.004
    [2]
    Reed R C. The Superalloys: Fundamentals and Applications. Cambridge: Cambridge University Press, 2008
    [3]
    刘光旭, 王晓峰, 杨杰, 等. 淬火处理过程中的局部干涉对FGH96合金表面组织的影响. 粉末冶金技术, 2023, 41(2): 143

    Liu G X, Wang X F, Yang J, et al. Effect of local interference on the surface microstructure of FGH96 alloys in quenching process. Powder Metall Technol, 2023, 41(2): 143
    [4]
    刘建涛, 张义文, 陶宇, 等. FGH96合金锻造盘坯热处理过程中的晶粒长大行为. 金属热处理, 2006, 31(6): 40 DOI: 10.3969/j.issn.0254-6051.2006.06.011

    Liu J T, Zhang Y W, Tao Y, et al. Grain growth behavior of FGH96 alloy forging disc during heat treatment. Heat Treat Met, 2006, 31(6): 40 DOI: 10.3969/j.issn.0254-6051.2006.06.011
    [5]
    万志鹏, 王涛, 李钊, 等. 晶界一次γ′相对GH4720Li合金晶粒长大行为的影响. 材料热处理学报, 2020, 41(8): 173 DOI: 10.13289/j.issn.1009-6264.2020-0069

    Wan Z P, Wang T, Li Z, et al. Influence of grain boundary primary γ′ precipitates on grain growth behavior of GH4720Li superalloy. Trans Mater Heat Treat, 2020, 41(8): 173 DOI: 10.13289/j.issn.1009-6264.2020-0069
    [6]
    Semiatin S L, Shank J M, Shiveley A R, et al. The effect of forging variables on the supersolvus heat-treatment response of powder-metallurgy nickel-base superalloys. Metall Mater Trans A, 2014, 45: 6231 DOI: 10.1007/s11661-014-2572-y
    [7]
    Wang G, Xu D S, Payton E J, et al. Mean-field statistical simulation of grain coarsening in the presence of stable and unstable pinning particles. Acta Mater, 2011, 59(11): 4587 DOI: 10.1016/j.actamat.2011.04.004
    [8]
    Charpagne M A, Franchet J M, Bozzolo N. Overgrown grains appearing during sub-solvus heat treatment in a polycrystalline γ-γ' nickel-based superalloy. Mater Des, 2018, 144: 353 DOI: 10.1016/j.matdes.2018.02.048
    [9]
    侯琼, 陶宇, 贾建. 新型粉末高温合金多火次等温锻造过程中晶粒细化机制. 工程科学学报, 2019, 41(2): 209

    Hou Q, Tao Y, Jia J. Grain refinement Mechanism in multi-fire isothermal Forging of novel powder superalloys. Chin J Eng, 2019, 41(2): 209
    [10]
    Huang H L, Liu G Q, Wang H, et al. Dissolution behavior and kinetics of γ′ phase during solution treatment in powder metallurgy nickel-based superalloy. Metall Mater Trans A, 2020, 51(3): 1075 DOI: 10.1007/s11661-019-05581-7
    [11]
    Umantsev A, Olson G B. Ostwald ripening in multicomponent alloys. Scr Metall Mater, 1993, 29(8): 1135 DOI: 10.1016/0956-716X(93)90191-T
    [12]
    Philippe T, Voorhees P W. Ostwald ripening in multicomponent alloys. Acta Mater, 2013, 61(11): 4237 DOI: 10.1016/j.actamat.2013.03.049
    [13]
    Kim K, Voorhees P W. Ostwald ripening of spheroidal particles in multicomponent alloys. Acta Mater, 2018, 152: 327 DOI: 10.1016/j.actamat.2018.04.041
    [14]
    Masoumi F, Jahazi M, Shahriari D, et al. Coarsening and dissolution of γʹ precipitates during solution treatment of AD730TM Ni-based superalloy: Mechanisms and kinetics model. J Alloys Compd, 2016, 658: 981 DOI: 10.1016/j.jallcom.2015.11.002
    [15]
    Randle V. Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials. Acta Mater, 1999, 47: 4187 DOI: 10.1016/S1359-6454(99)00277-3
    [16]
    Semiatin S L, Mcclary K E, Rollett A D, et al. Microstructure evolution during supersolvus heat treatment of a powder metallurgy nickel-base superalloy. Metall Mater Trans A, 2012, 43(5): 1649 DOI: 10.1007/s11661-011-1035-y
  • Related Articles

    [1]YUAN Zhenyu, CHANG Cheng, QI Huiying, XIAO Haibo, YAN Xingchen. Effects of micro-TiC particles on microstructure and mechanical properties of selective laser melting Inconel 625 alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 94-101. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070005
    [2]OUYANG Wei, ZHAI Bo, CHEN Wenlin, SONG Kuijing, CHEN Chang, ZHONG Zhihong. Microstructure and mechanical properties of FeCrCoMnNi matrix composites reinforced by TiC particles[J]. Powder Metallurgy Technology, 2024, 42(4): 338-345. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100010
    [3]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [4]YANG Jie, LIU Le, HUANG Xiaolin. Microstructure and mechanical properties of powder metallurgy sinter hardening steels with low Cr content[J]. Powder Metallurgy Technology, 2023, 41(4): 345-349, 355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060008
    [5]PENG Erbao, MA Xiao. Microstructure and mechanical properties of nanoscale xSiC/Mg‒5.5Zn‒0.1Y alloys by solid phase synthesis[J]. Powder Metallurgy Technology, 2023, 41(2): 149-153. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110009
    [6]LIU Zeng-lin, HAN Wei, WANG Yan-kang, WANG Tao, LÜ Wei-long. Microstructure and mechanical properties of diffusion alloyed steel composites reinforced by ceramic particles[J]. Powder Metallurgy Technology, 2022, 40(6): 527-534. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120007
    [7]GU Jing-hong, XIAO Ping-an, XIAO Li-yang, LÜ Rong, GU Si-min, ZHAO Ji-kang. Microstructure and mechanical properties of TiC particle enhanced high chromium iron[J]. Powder Metallurgy Technology, 2021, 39(4): 319-325. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080001
    [8]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
    [9]HE Qin-qiu, LI Pu-ming, YUAN Yong, ZHANG De-jin, LIU Zeng-lin, LI Song-lin. Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.002
    [10]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
  • Cited by

    Periodical cited type(1)

    1. 鞠庆红,成博源,王浩. 镍基粉末高温合金的热力学相图计算. 铸造工程. 2024(03): 33-37 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (2202) PDF downloads (57) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return