Citation: | LUO Laima, YAN Shuo, LIU Zhen, ZAN Xiang, WU Yucheng. Research progress and trend of advanced tungsten composite modification used for plasma facing materials[J]. Powder Metallurgy Technology, 2023, 41(1): 12-29. DOI: 10.19591/j.cnki.cn11-1974/tf.2022030012 |
Fusion energy is one of the effective ways to solve the energy crisis in the future, but the plasma-facing materials (PFMs) face the serious radiation and thermal shock damage from the plasma in the fusion reactor. At present, the pure tungsten is considered as the most promising PFM candidate materials because of the high thermal conductivity, good high-temperature strength, low sputtering, and low vapor pressure. Pure tungsten has the serious brittleness risk under the fusion reactor condition, so the modification of the advanced tungsten materials for PFMs has become the research hotspot in recent years. The modification methods of tungsten matrix composite include alloying, second phase strengthening, fiber reinforcement, and composite toughening. In this paper, the modification methods and performance of the tungsten matrix composites as PFMs used in the nuclear fusion reactors at home and abroad in recent years were reviewed, the modification mechanism of tungsten matrix composites was analyzed and summarized, and the development direction of tungsten matrix composites as PFMs was prospected.
[1] |
Asgarian M A, Seyedhabashi M M R, Bidabadi B S, et al. Radiation damage of tungsten surface irradiated with high-energy hydrogen and helium beams of plasma focus device. Fusion Eng Des, 2020, 160: 112007 DOI: 10.1016/j.fusengdes.2020.112007
|
[2] |
余明. 变形量和温度对纯钨再结晶特性影响研究[学位论文]. 合肥: 合肥工业大学, 2017
Yu M. Effects of Deformation Ratio and Annealing Temperature on the Recrystallization Behavior of Pure Tunsten [Dissertation]. Hefei: Hefei University of Technology, 2017
|
[3] |
Neu R, Hopf C, Kallenbach A, et al. Operational conditions in a W-clad tokamak. J Nucl Mater, 2007, 367: 1497
|
[4] |
Travere J M, Aumeunier M H, Joanny M, et al. Imaging challenges for ITER plasma-facing component protection. Fusion Sci Technol, 2013, 64(4): 735 DOI: 10.13182/FST13-A24093
|
[5] |
Matthews G F. Material migration in divertor tokamaks. J Nucl Mater, 2005, 337(1-3): 1
|
[6] |
Philipps V. Tungsten as material for plasma-facing components in fusion devices. J Nucl Mater, 2011, 415(1): S2 DOI: 10.1016/j.jnucmat.2011.01.110
|
[7] |
Hu W, Du Z, Dong Z, et al. The synthesis of TiC dispersed strengthened Mo alloy by freeze-drying technology and subsequent low temperature sintering. Scr Mater, 2021, 198: 113831 DOI: 10.1016/j.scriptamat.2021.113831
|
[8] |
Ren C, Koopman M, Fang Z Z, et al. A study on the sintering of ultrafine grained tungsten with Ti-based additives. Int J Refract Met Hard Mater, 2017, 65: 2 DOI: 10.1016/j.ijrmhm.2016.11.013
|
[9] |
Dong Z, Ma Z, Liu Y. Accelerated sintering of high-performance oxide dispersion strengthened alloy at low temperature. Acta Mater, 2021, 220: 117309 DOI: 10.1016/j.actamat.2021.117309
|
[10] |
Ren C, Fang Z Z, Koopman M, et al. Methods for improving ductility of tungsten-A review. Int J Refract Met Hard Mater, 2018, 75: 170 DOI: 10.1016/j.ijrmhm.2018.04.012
|
[11] |
Dong Z, Hu W, Ma Z, et al. The synthesis of composite powder precursors via chemical processes for the sintering of oxide dispersion-strengthened alloys. Mater Chem Front, 2019, 3(10): 1952 DOI: 10.1039/C9QM00422J
|
[12] |
Liu N, Dong Z, Ma Z, et al. Influence of yttrium addition on the reduction property of tungsten oxide prepared via wet chemical method. Acta Metall Sinica, 2020, 33(2): 275 DOI: 10.1007/s40195-019-00975-3
|
[13] |
Wang Z, Wu H, Zhu T, et al. Defects introduced by helium irradiation at different temperatures in W and W–5wt%Re alloy. Fusion Eng Des, 2021, 172: 112746 DOI: 10.1016/j.fusengdes.2021.112746
|
[14] |
Bonny G, Bakaev A, Terentyev D, et al. Elastic properties of the sigma W–Re phase: A first principles investigation. Scr Mater, 2017, 128: 45 DOI: 10.1016/j.scriptamat.2016.09.039
|
[15] |
Zhang T, Deng H W, Xie Z M, et al. Recent progresses on designing and manufacturing of bulk refractory alloys with high performances based on controlling interfaces. J Mater Sci Technol, 2020, 52: 29 DOI: 10.1016/j.jmst.2020.02.046
|
[16] |
Huang B, Tang J, Chen L Q, et al. Design of highly thermal-shock resistant tungsten alloys with nanoscaled intra- and inter-type K bubbles. J Alloys Compd, 2019, 782: 149 DOI: 10.1016/j.jallcom.2018.12.168
|
[17] |
罗来马, 黄科, 昝祥, 等. 合金化改性钨基材料的组织和性能研究与发展. 机械工程学报, 2018, 54(8): 117 DOI: 10.3901/JME.2018.08.117
Luo L M, Huang K, Zan X, et al. Research and development of alloy modified tungsten-based materials. Chin J Mech Eng, 2018, 54(8): 117 DOI: 10.3901/JME.2018.08.117
|
[18] |
Tan X Y, Li P, Luo L M, et al. Effect of second-phase particles on the properties of W-based materials under high-heat loading. Nucl Mater Energy, 2016, 9: 399 DOI: 10.1016/j.nme.2016.07.009
|
[19] |
Butler B G, Paramore J D, Ligda J P, et al. Mechanisms of deformation and ductility in tungsten-A review. Int J Refract Met Hard Mater, 2018, 75: 248 DOI: 10.1016/j.ijrmhm.2018.04.021
|
[20] |
Webb J, Gollapudi S, Charit I. An overview of creep in tungsten and its alloys. Int J Refract Met Hard Mater, 2019, 82: 69 DOI: 10.1016/j.ijrmhm.2019.03.022
|
[21] |
Mao Y, Coenen J W, Riesch J, et al. Influence of the interface strength on the mechanical properties of discontinuous tungsten fiber-reinforced tungsten composites produced by field assisted sintering technology. Composites Part A, 2018, 107: 342 DOI: 10.1016/j.compositesa.2018.01.022
|
[22] |
Waseem O A, Ryu H J. Toughening of a low-activation tungsten alloy using tungsten short fibers and particles reinforcement for fusion plasma-facing applications. Nucl Fusion, 2019, 59(2): 026007 DOI: 10.1088/1741-4326/aaf43f
|
[23] |
Kang K, Tu R, Luo G, et al. Synergetic effect of Re alloying and SiC addition on strength and toughness of tungsten. J Alloys Compd, 2018, 767: 1064 DOI: 10.1016/j.jallcom.2018.07.156
|
[24] |
Dong L, Chen W, Zheng C, et al. Microstructure and properties characterization of tungsten-copper composite materials doped with graphene. J Alloys Compd, 2017, 695: 1637 DOI: 10.1016/j.jallcom.2016.10.310
|
[25] |
Mutoh Y, Ichikawa K, Nagata K, et al. Effect of rhenium addition on fracture toughness of tungsten at elevated temperatures. J Mater Sci, 1995, 30(3): 770 DOI: 10.1007/BF00356341
|
[26] |
Wang Q, Du G P, Chen N, et al. Ideal strengths and thermodynamic properties of W and W–Re alloys from first-principles calculation. Fusion Eng Des, 2020, 155: 111579 DOI: 10.1016/j.fusengdes.2020.111579
|
[27] |
Kappacher J, Leitner A, Kiener D, et al. Thermally activated deformation mechanisms and solid solution softening in W–Re alloys investigated via high temperature nanoindentation. Mater Des, 2020, 189: 108499 DOI: 10.1016/j.matdes.2020.108499
|
[28] |
Ravi K V, Gibala R. The strength of niobium-oxygen solid solutions. Acta Metall, 1970, 18(6): 623 DOI: 10.1016/0001-6160(70)90091-X
|
[29] |
Schade P, Ortner H M, Smid I. Refractory metals revolutionizing the lighting technology: A historical review. Int J Refract Met Hard Mater, 2015, 50: 23 DOI: 10.1016/j.ijrmhm.2014.11.002
|
[30] |
Shu X, Qiu H, Huang B, et al. Preparation and characterization of potassium doped tungsten. J Nucl Mater, 2013, 440(1): 414
|
[31] |
Shu X, Huang B, Liu D, et al. Effects of low energy helium plasma irradiation on potassium doped tungsten. Fusion Eng Des, 2017, 117: 8 DOI: 10.1016/j.fusengdes.2017.02.004
|
[32] |
Srivastav A K, Chawake N, Yadav D, et al. Localized pore evolution assisted densification during spark plasma sintering of nanocrystalline W–5wt.%Mo alloy. Scr Mater, 2019, 159: 41 DOI: 10.1016/j.scriptamat.2018.09.013
|
[33] |
Ipatova I, Greaves G, Pacheco-Gutiérrez S, et al. In-situ TEM investigation of nano-scale helium bubble evolution in tantalum-doped tungsten at 800 ℃. J Nucl Mater, 2021, 550: 152910 DOI: 10.1016/j.jnucmat.2021.152910
|
[34] |
Xu M Y, Luo L M, Zhou Y F, et al. Helium irradiation behavior of tungsten-niobium alloys under different ion energies. Fusion Eng Des, 2018, 132: 7 DOI: 10.1016/j.fusengdes.2018.05.015
|
[35] |
沈丹妮, 王超宁, 高鹏, 等. 放电等离子烧结制备超细晶钨钛合金. 粉末冶金技术, 2021, 39(2): 165 DOI: 10.19591/j.cnki.cn11-1974/tf.2019110008
Shen D N, Wang C N, Gao P, et al. Ultrafine grained W–Ti alloys prepared by spark plasma sintering. Powder Metall Technol, 2021, 39(2): 165 DOI: 10.19591/j.cnki.cn11-1974/tf.2019110008
|
[36] |
Luo L M, Zhao Z H, Yao G, et al. Recent progress on preparation routes and performance evaluation of ODS/CDS–W alloys for plasma facing materials in fusion devices. J Nucl Mater, 2021, 548: 152857 DOI: 10.1016/j.jnucmat.2021.152857
|
[37] |
Tan X Y, Luo L M, Chen H Y, et al. Mechanical properties and microstructural change of W–Y2O3 alloy under helium irradiation. Sci Rep, 2015, 5: 12755 DOI: 10.1038/srep12755
|
[38] |
Hu W Q, Dong Z, Wang H, et al. Microstructure refinement and mechanical properties improvement in the W–Y2O3 alloys via optimized freeze-drying. Int J Refractory Met Hard Mater, 2021, 95: 105453 DOI: 10.1016/j.ijrmhm.2020.105453
|
[39] |
Yao G, Luo L M, Tan X Y, et al. Effect of Y2O3 particles on the helium ion irradiation damage of W–2%Y2O3 composite prepared by wet chemical method. Materialia, 2019, 6: 100268 DOI: 10.1016/j.mtla.2019.100268
|
[40] |
Yang J, Gang C, Zheng C, et al. Effects of doping route on microstructure and mechanical properties of W–1.0wt.%La2O3 alloys. Trans Nonferrous Met Soc China, 2020, 30(12): 3296 DOI: 10.1016/S1003-6326(20)65462-0
|
[41] |
Liu L, Li S Z, Liu D P, et al. Surface damages of polycrystalline W and La2O3-doped W induced by high-flux He plasma irradiation. J Nucl Mater, 2018, 501: 275 DOI: 10.1016/j.jnucmat.2018.01.047
|
[42] |
Liu R, Xie Z M, Yang J F, et al. Recent progress on the R&D of W–ZrC alloys for plasma facing components in fusion devices. Nucl Mater Energy, 2018, 16: 191 DOI: 10.1016/j.nme.2018.07.002
|
[43] |
Lang E, Schamis H, Madden N, et al. Recrystallization suppression through dispersion-strengthening of tungsten. J Nucl Mater, 2021, 545: 152613 DOI: 10.1016/j.jnucmat.2020.152613
|
[44] |
Li P, Fan J, Han Y, et al. Microstructure evolution and properties of tungsten reinforced by additions of ZrC. Rare Met Mater Eng, 2018, 47(6): 1695 DOI: 10.1016/S1875-5372(18)30152-8
|
[45] |
Wang M M, Deng H W, Wang H, et al. Fabrication and stability of ultrafine ZrC nanoparticles dispersion strengthened sub-micrometer grained W alloy. Fusion Eng Des, 2021, 169: 112483 DOI: 10.1016/j.fusengdes.2021.112483
|
[46] |
Kurishita H, Matsuo S, Arakawa H, et al. High temperature tensile properties and their application to toughness enhancement in ultra-fine grained W–(0-1.5)wt% TiC. J Nucl Mater, 2009, 386-388: 579 DOI: 10.1016/j.jnucmat.2008.12.181
|
[47] |
吴玉程. 面向等离子体W材料改善韧性的方法与机制. 金属学报, 2019, 55(2): 171 DOI: 10.11900/0412.1961.2018.00404
Wu Y C. The routes and mechanism of plasma facing tungsten materials to improve ductility. Acta Metall Sinica, 2019, 55(2): 171 DOI: 10.11900/0412.1961.2018.00404
|
[48] |
Gietl H, Riesch J, Coenen J W, et al. Tensile deformation behavior of tungsten fibre-reinforced tungsten composite specimens in as-fabricated state. Fusion Eng Des, 2017, 124: 396 DOI: 10.1016/j.fusengdes.2017.02.054
|
[49] |
Gietl H, Riesch J, Coenen J W, et al. Production of tungsten-fibre reinforced tungsten composites by a novel continuous chemical vapour deposition process. Fusion Eng Des, 2019, 146: 1426 DOI: 10.1016/j.fusengdes.2019.02.097
|
[50] |
Zhang L, Jiang Y, Fang Q, et al. Comparative investigation of tungsten fibre nets reinforced tungsten composite fabricated by three different methods. Metals, 2017, 7(7): 249 DOI: 10.3390/met7070249
|
[51] |
Chen L, Qiu W, Deng H, et al. Annealing induced shrinkage-fill effect of tungsten-potassium alloys with trace titanium doping. Int J Refract Met Hard Mater, 2020, 90: 105193 DOI: 10.1016/j.ijrmhm.2020.105193
|
[52] |
Miyazawa T, Garrison L M, Geringer J W, et al. Neutron irradiation effects on the mechanical properties of powder metallurgical processed tungsten alloys. J Nucl Mater, 2020, 529: 151910 DOI: 10.1016/j.jnucmat.2019.151910
|
[53] |
Miyazawa T, Garrison L M, Geringer J W, et al. Tensile properties of powder-metallurgical-processed tungsten alloys after neutron irradiation near recrystallization temperatures. J Nucl Mater, 2020, 542: 152505 DOI: 10.1016/j.jnucmat.2020.152505
|
[54] |
Shi K, Huang B, He B, et al. Room-temperature tensile strength and thermal shock behavior of spark plasma sintered W–K–TiC alloys. Nucl Eng Technol, 2019, 51(1): 190 DOI: 10.1016/j.net.2018.09.015
|
[55] |
Li Y C, Zhang W, Li J F, et al. Microstructure and high temperature mechanical properties of advanced W–3Re alloy reinforced with HfC particles. Mater Sci Eng A, 2021, 814: 141198 DOI: 10.1016/j.msea.2021.141198
|
[56] |
Zhang J, Tian Y, Zhu J, et al. Microstructure and mechanical properties of HfC reinforced W matrix composites regulated by trace Zr. Int J Refract Met Hard Mater, 2020, 86: 105096 DOI: 10.1016/j.ijrmhm.2019.105096
|
[57] |
Zhao B L, Xie Z M, Liu R, et al. Fabrication of an ultrafine-grained W–ZrC–Re alloy with high thermal stability. Fusion Eng Des, 2021, 164: 112208 DOI: 10.1016/j.fusengdes.2020.112208
|
[58] |
Dong Z, Ma Z Q, Yu L M, et al. Enhanced mechanical properties in oxide-dispersion-strengthened alloys achieved via interface segregation of cation dopants. Sci China Mater, 2021, 64(4): 987 DOI: 10.1007/s40843-020-1481-0
|
[59] |
Zhang Z W, Zhao S Q, Lü Y Q, et al. Modification of microstructure and performance via doping Ti in W–1TiC fine-grained alloy. Mater Sci Eng A, 2021, 825: 141918 DOI: 10.1016/j.msea.2021.141918
|
[1] | CHEN Bing-wei, YANG Xue-feng, ZHU Zhen-dong, LI Zheng-xin. Surface morphology characterization of diamond etched by CeO2[J]. Powder Metallurgy Technology, 2022, 40(4): 318-324. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090018 |
[2] | LIN Bing-tao, HE Jun, LIU Zhong-wei, WANG Cheng-yang, LI Ming, SUN Xiao-xia, ZHOU Shu-qiu. Fracture morphology and microstructure analysis of Mo–La nozzles for solid rocket motor[J]. Powder Metallurgy Technology, 2022, 40(1): 80-85. DOI: 10.19591/j.cnki.cn11-1974/tf.2021070003 |
[3] | YANG Wen-tao, XUE Bing, DAI Yong-fu, PU Chuan-jin, XIAO Ding-jun. Effect of milling time on the particle size distribution and morphology of tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(5): 423-428. DOI: 10.19591/j.cnki.cn11-1974/tf.2020020010 |
[4] | SI Jia-jia, SU Xiao-lei. Preparation of ultrafine spherical nickel powders[J]. Powder Metallurgy Technology, 2021, 39(2): 177-183. DOI: 10.19591/j.cnki.cn11-1974/tf.2019090003 |
[5] | SUN Tian-hao, HAO Su-ju, JIANG Wu-feng, ZHANG Yu-zhu. Preparation and morphology analysis of nano-sized iron oxide[J]. Powder Metallurgy Technology, 2021, 39(1): 76-80. DOI: 10.19591/j.cnki.cn11-1974/tf.2019080008 |
[6] | ZHANG Bao-hong, TANG Liang-liang. Study on the erosion morphology of W-Ni-Sr electrode[J]. Powder Metallurgy Technology, 2020, 38(4): 289-294. DOI: 10.19591/j.cnki.cn11-1974/tf.2019050007 |
[7] | LUO Xiao-qiang, HAN Yong-jun, FENG Yun-xiao, YU Hao, YU Chun-bo, ZHAO Li-heng. Effect of bucket temperature on grain morphology of semi-solid melt A356 by micro fused-casting[J]. Powder Metallurgy Technology, 2019, 37(3): 170-174. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.002 |
[8] | Hydrothermal synthesis of micro-copper powders with special morphology[J]. Powder Metallurgy Technology, 2010, 28(3): 200-203. |
[9] | Du Huiling, Wang Jianzhong, Chen Danfeng, Cang Daqiang. Effects of pulsed electromagnetic field on morphology of cobalt oxalate powders[J]. Powder Metallurgy Technology, 2010, 28(2): 96-100. |
[10] | Xu Tianhan, Wang Danghui. Effect of inner diameter of delivery tube end of atomizer on morphology and size distribution of free-lead solder powder[J]. Powder Metallurgy Technology, 2009, 27(3): 197-202. |
1. |
王哲昊,吕绪明. 等离子喷涂技术在工程陶瓷涂层制备中的应用现状及展望. 材料导报. 2024(11): 52-61 .
![]() | |
2. |
陈开旺,张鹏林,李树旺,牛显明,胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能. 材料研究学报. 2023(01): 39-46 .
![]() | |
3. |
张一帆,王曲,王刚,刘鹏程,张琪,司瑶晨. 黏结剂种类对铝酸镧涂层材料性能的影响. 耐火材料. 2022(02): 123-126 .
![]() | |
4. |
张志辉,李明. 316L钢表面超音速火焰喷涂Fe基粉末涂层显微结构及摩擦性能分析. 粉末冶金技术. 2022(04): 351-355+361 .
![]() | |
5. |
蔡浩,龚关,梁雅琪,仇秀梅,刘可. 莫来石在醇基铸造涂料中的试验研究. 中国新技术新产品. 2022(21): 26-28+145 .
![]() |