Citation: | ZHANG Xu, SHI Siyang, ZHANG Tengyu, TIAN Jin, WU Yake, WANG Sui, ZHAO Zhenzhi, JIANG Feng. Microstructure and properties of alumina ceramic particle reinforced Fe–Ni–Mo–C–Cu composites prepared by powder forging[J]. Powder Metallurgy Technology, 2024, 42(3): 275-282. DOI: 10.19591/j.cnki.cn11-1974/tf.2022070015 |
The Fe–Ni–Mo–C–Cu (Q61) composites reinforced by Al2O3 particles with different contents were prepared by powder forging. The microstructure and properties of the tempered and quenched Q61 composites were studied. The results show that, when the mass fraction of Al2O3 is 0.15%, the Al2O3 particles are distributed homogeneously in the matrix. Compared with the single Q61 without reinforced particles under the same state, the hardness and yield strength of the tempered composites are increased from HRC 38 and
[1] |
万霖, 张继峰, 孙露, 等. C与Cr含量对粉末锻造Fe–Cu–C–Cr合金组织和物理性能影响. 粉末冶金技术, 2023, 41(6): 508
Wan L, Zhang J F, Sun L, et al. Effects of C and Cr contents on microstructure and physical properties of powder forged Fe–Cu–C–Cr alloys. Powder Metall Technol, 2023, 41(6): 508
|
[2] |
郭彪. 铁基材料粉末锻造及致密化成形技术研究[学位论文]. 成都: 西南交通大学, 2012
Guo B. Study on Powder Forging and Densification Forming Technology of Ferrous Alloy [Dissertation]. Chengdu: Southwest Jiaotong University, 2012
|
[3] |
张冰清. 粉末锻造Q61合金的组织与性能研究[学位论文]. 西安: 西安交通大学, 2018
Zhang B Q. Study on Microstructure and Properties of Powder Forging Q61 Alloys [Dissertation]. Xi’an: Xi’an Jiaotong University, 2018
|
[4] |
Boreczky Eric, 韩凤麟. 北美粉末冶金汽车零件产业的发展与前景. 粉末冶金技术, 2015, 33(3): 232 DOI: 10.3969/j.issn.1001-3784.2015.03.014
Boreczky E, Han F L. North america’s PM industry: The challenges of an evolving automotive market. Powder Metall Technol, 2015, 33(3): 232 DOI: 10.3969/j.issn.1001-3784.2015.03.014
|
[5] |
MPIF. Plenary sessions highlight continued growth for global powder metallurgy // World PM2018: Metal Powder Report. Beijing, 2017: 79
|
[6] |
Alven D A, Imbrogno P G. The effect of density on the bending fatigue of powdered metal gears // American Society of Mechanical Engineers. Las Vegas, 2007: 879
|
[7] |
韩风麟. 美国MPIF标准35“P/F钢零件材料标准”简介. 粉末冶金技术, 2000, 18(4): 292 DOI: 10.3321/j.issn:1001-3784.2000.04.010
Han F L. Introduction of US MPIF Standard 35 “P/F steel parts material standard”. Powder Metall Technol, 2000, 18(4): 292 DOI: 10.3321/j.issn:1001-3784.2000.04.010
|
[8] |
温伟祥. 粉末锻造技术及其展望. 山东工业技术, 2015(22): 18
Wen W X. Powder forging technology and its outlook. Shandong Ind Technol, 2015(22): 18
|
[9] |
Wang S, Wang Q, Wang H L, et al. Effects of copper content on microstructure and mechanical properties of powder-forged rod Fe–C–Cu alloys manufactured at elevated temperature. Mater Sci Eng A, 2019, 743(16): 197
|
[10] |
柏琳娜, 刘福平, 王邃, 等. Fe–C–Cu粉末锻造汽车发动机连杆的组织与力学性能. 金属学报, 2016, 52(1): 41 DOI: 10.11900/0412.1961.2015.00486
Bai L N, Liu F P, Wang S, et al. Microstructure and mechanical properties of Fe–C–Cu powder-forged connecting rod. Acta Metall Sin, 2016, 52(1): 41 DOI: 10.11900/0412.1961.2015.00486
|
[11] |
陈其玲. 粉末热锻零件性能影响因素研究[学位论文]. 合肥: 合肥工业大学, 2013
Chen Q L. Research on the Related Factors of Performance of Powder Hot Forging Parts [Dissertation]. Hefei: Hefei University of Technology, 2013
|
[12] |
张冰清, 王琪, 王邃, 等. 粉末锻造齿轮材料的组织与性能研究. 粉末冶金技术, 2020, 38(2): 113
Zhang B Q, Wang Q, Wang S, et al. Study on the microstructure and properties of powder-forged gear materials. Powder Metall Technol, 2020, 38(2): 113
|
[13] |
王琪, 张冰清, 王邃, 等. 粉末锻造Fe–Ni–Cu–C–Mo齿轮材料热处理及性能研究. 粉末冶金技术, 2021, 39(1): 33
Wang Q, Zhang B Q, Wang S, et al. Heat treatment and properties of powder forged Fe–Ni–Cu–C–Mo gear materials. Powder Metall Technol, 2021, 39(1): 33
|
[14] |
金荣植. 齿轮热处理手册. 北京: 机械工业出版社, 2015
Jin R Z. Gear Heat Treatment Manual. Beijing: China Machine Press, 2015
|
[15] |
汝娟坚, 贺涵. 陶瓷颗粒增强金属基复合材料的制备方法及研究进展. 科技创新与应用, 2019(19): 116
Ru J J, He H. Preparation method and research progress of ceramic particle-reinforced metal-based composites. Technol Innov Appl, 2019(19): 116
|
[16] |
刘建秀, 潘胜利, 吴深. 铜基粉末冶金摩擦材料增强相的研究发展状况, 粉末冶金工业, 2020, 30(1): 77
Liu J X, Pan S L, Wu S, et al. Research and development of reinforced phases in copper based powder metallurgical friction materials. Powder Metall Ind, 2020, 30(1): 77
|
[17] |
刘胜新. 金属材料力学性能手册. 北京: 机械工业出版社, 2018
Liu S X. Mechanical Performance Manual of Metal Material. Beijing: China Machine Press, 2018
|
[18] |
赵东升, 胡博, 刘海涛, 等. 混粉工艺对石墨/Al2O3/Al复合材料增强体颗粒分布均匀性的影响. 热加工工艺, 2020, 49(18): 72
Zhao D S, Hu B, Liu H T, et al. Effect of powder mixing process on particle distribution uniformity of graphite/Al2O3/Al composites reinforcement. Hot Work Technol, 2020, 49(18): 72
|
[19] |
王恩泽, 王恩万, 邢建东, 等. 涂层对氧化铝/耐热钢液间湿润角的影响及其应用. 西安交通大学学报, 2000, 34(11): 78 DOI: 10.3321/j.issn:0253-987X.2000.11.019
Wang E Z, Wang E W, Xing J D, et al. Effect of coating on wetting-angle between aluminum oxide heat-resistant steel. J Xi’an Jiaotong Univ, 2000, 34(11): 78 DOI: 10.3321/j.issn:0253-987X.2000.11.019
|
[20] |
范瑞瑞, 张瑞, 李炎, 等. 粉末冶金法制备Al2O3颗粒增强Fe基复合材料. 热加工工艺, 2011, 40(24): 120 DOI: 10.3969/j.issn.1001-3814.2011.24.038
Fan R R, Zhang R, Li Y, et al. Fabrication of Fe matrix composite reinforced with Al2O3 particles by powder metallurgical method. Hot Work Technol, 2011, 40(24): 120 DOI: 10.3969/j.issn.1001-3814.2011.24.038
|
[21] |
赵翔, 郝俊杰, 彭坤, 等. Cr–Fe为摩擦组元的铜基粉末冶金摩擦材料的摩擦磨损性能. 粉末冶金材料科学与工程, 2014, 19(6): 935
Zhao X, Hao J J, Peng K, et al. Friction and wear behavior of Cu-based P/M friction materials with Cr–Fe as friction components. Mater Sci Eng Powder Metall, 2014, 19(6): 935
|