AdvancedSearch
ZHANG Xu, SHI Siyang, ZHANG Tengyu, TIAN Jin, WU Yake, WANG Sui, ZHAO Zhenzhi, JIANG Feng. Microstructure and properties of alumina ceramic particle reinforced Fe–Ni–Mo–C–Cu composites prepared by powder forging[J]. Powder Metallurgy Technology, 2024, 42(3): 275-282. DOI: 10.19591/j.cnki.cn11-1974/tf.2022070015
Citation: ZHANG Xu, SHI Siyang, ZHANG Tengyu, TIAN Jin, WU Yake, WANG Sui, ZHAO Zhenzhi, JIANG Feng. Microstructure and properties of alumina ceramic particle reinforced Fe–Ni–Mo–C–Cu composites prepared by powder forging[J]. Powder Metallurgy Technology, 2024, 42(3): 275-282. DOI: 10.19591/j.cnki.cn11-1974/tf.2022070015

Microstructure and properties of alumina ceramic particle reinforced Fe–Ni–Mo–C–Cu composites prepared by powder forging

More Information
  • Corresponding author:

    JIANG Feng, E-mail: jiangfeng@mail.xjtu.edu.cn

  • Received Date: September 05, 2022
  • Accepted Date: September 05, 2022
  • Available Online: September 05, 2022
  • The Fe–Ni–Mo–C–Cu (Q61) composites reinforced by Al2O3 particles with different contents were prepared by powder forging. The microstructure and properties of the tempered and quenched Q61 composites were studied. The results show that, when the mass fraction of Al2O3 is 0.15%, the Al2O3 particles are distributed homogeneously in the matrix. Compared with the single Q61 without reinforced particles under the same state, the hardness and yield strength of the tempered composites are increased from HRC 38 and 1106 MPa to HRC 39.8 and 1121 MPa, respectively, while the elongation is decreased from 12% to 6.5%; the hardness of the quenched Q61 composites is enhanced from HRC 61.5 to HRC 63.2, and the wear rate is reduced from 5.27×10−6 mm3·m−1·N−1 to 3.08×10−6 mm3·m−1·N−1, lower than that of the typical 40Cr gear materials (3.34×10−6 mm3·m−1·N−1). However, the Al2O3 particles are aggregated gradually when the Al2O3 addition content is more than 0.15%. Though the yield strength is still improved, the plasticity is reduced significantly for the tempered composites, and the wear rate is greatly increased for the quenched composites, showing the degraded wear resistance. In summary, the Q61 composites with 0.15% Al2O3 particles show the higher comprehensive mechanical properties in the tempered state and the good wear resistance in the quenched states, respectively.

  • [1]
    万霖, 张继峰, 孙露, 等. C与Cr含量对粉末锻造Fe–Cu–C–Cr合金组织和物理性能影响. 粉末冶金技术, 2023, 41(6): 508

    Wan L, Zhang J F, Sun L, et al. Effects of C and Cr contents on microstructure and physical properties of powder forged Fe–Cu–C–Cr alloys. Powder Metall Technol, 2023, 41(6): 508
    [2]
    郭彪. 铁基材料粉末锻造及致密化成形技术研究[学位论文]. 成都: 西南交通大学, 2012

    Guo B. Study on Powder Forging and Densification Forming Technology of Ferrous Alloy [Dissertation]. Chengdu: Southwest Jiaotong University, 2012
    [3]
    张冰清. 粉末锻造Q61合金的组织与性能研究[学位论文]. 西安: 西安交通大学, 2018

    Zhang B Q. Study on Microstructure and Properties of Powder Forging Q61 Alloys [Dissertation]. Xi’an: Xi’an Jiaotong University, 2018
    [4]
    Boreczky Eric, 韩凤麟. 北美粉末冶金汽车零件产业的发展与前景. 粉末冶金技术, 2015, 33(3): 232 DOI: 10.3969/j.issn.1001-3784.2015.03.014

    Boreczky E, Han F L. North america’s PM industry: The challenges of an evolving automotive market. Powder Metall Technol, 2015, 33(3): 232 DOI: 10.3969/j.issn.1001-3784.2015.03.014
    [5]
    MPIF. Plenary sessions highlight continued growth for global powder metallurgy // World PM2018: Metal Powder Report. Beijing, 2017: 79
    [6]
    Alven D A, Imbrogno P G. The effect of density on the bending fatigue of powdered metal gears // American Society of Mechanical Engineers. Las Vegas, 2007: 879
    [7]
    韩风麟. 美国MPIF标准35“P/F钢零件材料标准”简介. 粉末冶金技术, 2000, 18(4): 292 DOI: 10.3321/j.issn:1001-3784.2000.04.010

    Han F L. Introduction of US MPIF Standard 35 “P/F steel parts material standard”. Powder Metall Technol, 2000, 18(4): 292 DOI: 10.3321/j.issn:1001-3784.2000.04.010
    [8]
    温伟祥. 粉末锻造技术及其展望. 山东工业技术, 2015(22): 18

    Wen W X. Powder forging technology and its outlook. Shandong Ind Technol, 2015(22): 18
    [9]
    Wang S, Wang Q, Wang H L, et al. Effects of copper content on microstructure and mechanical properties of powder-forged rod Fe–C–Cu alloys manufactured at elevated temperature. Mater Sci Eng A, 2019, 743(16): 197
    [10]
    柏琳娜, 刘福平, 王邃, 等. Fe–C–Cu粉末锻造汽车发动机连杆的组织与力学性能. 金属学报, 2016, 52(1): 41 DOI: 10.11900/0412.1961.2015.00486

    Bai L N, Liu F P, Wang S, et al. Microstructure and mechanical properties of Fe–C–Cu powder-forged connecting rod. Acta Metall Sin, 2016, 52(1): 41 DOI: 10.11900/0412.1961.2015.00486
    [11]
    陈其玲. 粉末热锻零件性能影响因素研究[学位论文]. 合肥: 合肥工业大学, 2013

    Chen Q L. Research on the Related Factors of Performance of Powder Hot Forging Parts [Dissertation]. Hefei: Hefei University of Technology, 2013
    [12]
    张冰清, 王琪, 王邃, 等. 粉末锻造齿轮材料的组织与性能研究. 粉末冶金技术, 2020, 38(2): 113

    Zhang B Q, Wang Q, Wang S, et al. Study on the microstructure and properties of powder-forged gear materials. Powder Metall Technol, 2020, 38(2): 113
    [13]
    王琪, 张冰清, 王邃, 等. 粉末锻造Fe–Ni–Cu–C–Mo齿轮材料热处理及性能研究. 粉末冶金技术, 2021, 39(1): 33

    Wang Q, Zhang B Q, Wang S, et al. Heat treatment and properties of powder forged Fe–Ni–Cu–C–Mo gear materials. Powder Metall Technol, 2021, 39(1): 33
    [14]
    金荣植. 齿轮热处理手册. 北京: 机械工业出版社, 2015

    Jin R Z. Gear Heat Treatment Manual. Beijing: China Machine Press, 2015
    [15]
    汝娟坚, 贺涵. 陶瓷颗粒增强金属基复合材料的制备方法及研究进展. 科技创新与应用, 2019(19): 116

    Ru J J, He H. Preparation method and research progress of ceramic particle-reinforced metal-based composites. Technol Innov Appl, 2019(19): 116
    [16]
    刘建秀, 潘胜利, 吴深. 铜基粉末冶金摩擦材料增强相的研究发展状况, 粉末冶金工业, 2020, 30(1): 77

    Liu J X, Pan S L, Wu S, et al. Research and development of reinforced phases in copper based powder metallurgical friction materials. Powder Metall Ind, 2020, 30(1): 77
    [17]
    刘胜新. 金属材料力学性能手册. 北京: 机械工业出版社, 2018

    Liu S X. Mechanical Performance Manual of Metal Material. Beijing: China Machine Press, 2018
    [18]
    赵东升, 胡博, 刘海涛, 等. 混粉工艺对石墨/Al2O3/Al复合材料增强体颗粒分布均匀性的影响. 热加工工艺, 2020, 49(18): 72

    Zhao D S, Hu B, Liu H T, et al. Effect of powder mixing process on particle distribution uniformity of graphite/Al2O3/Al composites reinforcement. Hot Work Technol, 2020, 49(18): 72
    [19]
    王恩泽, 王恩万, 邢建东, 等. 涂层对氧化铝/耐热钢液间湿润角的影响及其应用. 西安交通大学学报, 2000, 34(11): 78 DOI: 10.3321/j.issn:0253-987X.2000.11.019

    Wang E Z, Wang E W, Xing J D, et al. Effect of coating on wetting-angle between aluminum oxide heat-resistant steel. J Xi’an Jiaotong Univ, 2000, 34(11): 78 DOI: 10.3321/j.issn:0253-987X.2000.11.019
    [20]
    范瑞瑞, 张瑞, 李炎, 等. 粉末冶金法制备Al2O3颗粒增强Fe基复合材料. 热加工工艺, 2011, 40(24): 120 DOI: 10.3969/j.issn.1001-3814.2011.24.038

    Fan R R, Zhang R, Li Y, et al. Fabrication of Fe matrix composite reinforced with Al2O3 particles by powder metallurgical method. Hot Work Technol, 2011, 40(24): 120 DOI: 10.3969/j.issn.1001-3814.2011.24.038
    [21]
    赵翔, 郝俊杰, 彭坤, 等. Cr–Fe为摩擦组元的铜基粉末冶金摩擦材料的摩擦磨损性能. 粉末冶金材料科学与工程, 2014, 19(6): 935

    Zhao X, Hao J J, Peng K, et al. Friction and wear behavior of Cu-based P/M friction materials with Cr–Fe as friction components. Mater Sci Eng Powder Metall, 2014, 19(6): 935
  • Related Articles

    [1]MA Ling, XU Yan, DU Jianhua, HAN Ming, QIU Qian, ZHANG Nan, JI Zhen. Friction and wear properties of iron-copper based powder metallurgy materials under braking conditions[J]. Powder Metallurgy Technology, 2024, 42(4): 354-360. DOI: 10.19591/j.cnki.cn11-1974/tf.2022030003
    [2]ZHANG Zhiwen, DONG Xiuping, HUANG Mingji, Qiao Xiaoxi. Study on friction and wear properties of TC4 titanium alloy wire[J]. Powder Metallurgy Technology, 2023, 41(2): 108-115, 130. DOI: 10.19591/j.cnki.cn11-1974/tf.2022080009
    [3]LIU Guimin, HUI Yang, DU Jianhua, LAN Hai. Friction and wear properties of particle-reinforced iron-based composites under continuous high temperature braking[J]. Powder Metallurgy Technology, 2023, 41(1): 63-70. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030031
    [4]WEI Dong-bin, ZHANG Lin, ZHANG Peng, WU Pei-fang, CAO Jing-wu, SHIJIA Cai-rang, DING Xiang-ying, ZHAO Shang-jie, QU Xuan-hui. Effect of Cu‒Fe pre-alloyed powders on the friction and wear properties of Cu-based friction materials[J]. Powder Metallurgy Technology, 2022, 40(1): 4-12. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050017
    [5]XU Yang, BAN Le, XIAO Zhi-yu. Process optimization and friction and wear properties of CoCrWMo alloys fabricated by selective laser melting[J]. Powder Metallurgy Technology, 2021, 39(6): 505-511. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050011
    [6]LI Jian, LI Chang-sheng, DUAN Zhao-yu. Effect of MoS2−Ag−V2O5 on friction and wear properties of nickel-based composites[J]. Powder Metallurgy Technology, 2021, 39(2): 141-146. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120008
    [7]HU Zheng, ZHANG Nan, ZHANG Wang-hao, DU Jian-hua, HAN Jun-jiao, JI Zhen. Effect of graphite content on friction and wear properties of copper-based friction materials[J]. Powder Metallurgy Technology, 2020, 38(6): 409-413. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050007
    [8]CHEN Bai-ming, ZHANG Jun-xi, GUO Xiao-ru, JIA Jing-long, ZHANG Zhen-yu, WANG Yun. Effects of BN and MoS2 on friction and wear properties of nickel-based materials[J]. Powder Metallurgy Technology, 2019, 37(4): 273-278. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.006
    [9]WU Hui, GUO Biao, LI Qiang, AO Jin-qing, LIU Sheng-ming, LU Yun. Effects of Cr2AlC content on friction and wear properties of copper matrix composites[J]. Powder Metallurgy Technology, 2019, 37(3): 184-190. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.004
    [10]ZHAO Xing-ke, WANG Zhi-hua, TANG Rong-hua, WEI Lin-chun. Research on friction and wear of graphite-nickel coating and mudstone[J]. Powder Metallurgy Technology, 2019, 37(2): 112-117. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.02.005

Catalog

    Article Metrics

    Article views (544) PDF downloads (107) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return