AdvancedSearch
ZHANG Zhiwen, DONG Xiuping, HUANG Mingji, Qiao Xiaoxi. Study on friction and wear properties of TC4 titanium alloy wire[J]. Powder Metallurgy Technology, 2023, 41(2): 108-115, 130. DOI: 10.19591/j.cnki.cn11-1974/tf.2022080009
Citation: ZHANG Zhiwen, DONG Xiuping, HUANG Mingji, Qiao Xiaoxi. Study on friction and wear properties of TC4 titanium alloy wire[J]. Powder Metallurgy Technology, 2023, 41(2): 108-115, 130. DOI: 10.19591/j.cnki.cn11-1974/tf.2022080009

Study on friction and wear properties of TC4 titanium alloy wire

More Information
  • Corresponding author:

    DONG Xiuping, E-mail: dongxp@th.btbu.edu.cn

  • Received Date: August 16, 2022
  • Available Online: October 30, 2022
  • The friction and wear properties of the TC4 titanium alloy wire under the dry friction conditions were studied. The influence of load (F) and friction speed (V) on the friction coefficient and wear rate of the TC4 wire was investigated. The scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) were used to observe and analyze the surface morphology, element composition, and phase component of the TC4 wire worn surface, and the wear mechanism was discussed. The results show that, when the sliding speed is the same, as the load increases, the friction coefficient increases first and then decreases, and the wear rate continues to increase. When the load is constant, the sliding speed is negatively correlated with the friction coefficient and positively correlated with the wear rate. For the TC4 wear mechanism, the oxidative wear and abrasive wear mainly occur under the low load and low speed, the oxidative wear and adhesive wear mainly occur under the medium load and medium speed, the abrasive wear mainly occurs at high load, while the oxidative wear occurs at high speed. The friction coefficient first decreases and then increases with the increase of F∙V value, and the wear rate is positively correlated with F∙V value.

  • [1]
    朱知寿. 我国航空用钛合金技术研究现状及发展. 航空材料学报, 2014, 34(4): 44

    Zhu Z S. Recent research and development of titanium alloys for aviation application in China. J Aeronaut Mater, 2014, 34(4): 44
    [2]
    季正勇, 李春福, 宋开红, 等. 金属橡胶的应用研究及其进展. 热加工工艺, 2011, 40(16): 96

    Ji Z Y, Li C F, Song K H, et al. Application research and development of metal-rubber. Hot Work Technol, 2011, 40(16): 96
    [3]
    胡林泉, 缪强, 梁文萍, 等. 载荷对经氧‒氮共渗的TC4钛合金摩擦学性能的影响. 热处理, 2019, 34(3): 1

    Hu L Q, Miao Q, Liang W P, et al. Effect of loads on tribological characteristics of oxynitrided TC4 titanium alloy. Heat Treat, 2019, 34(3): 1
    [4]
    景鹏飞, 俞树荣, 宋伟, 等. 接触载荷对TC4钛合金微动磨损行为的影响. 表面技术, 2019, 48(11): 266

    Jing P F, Yu S R, Song W, et al. Effect of contact load on fretting wear behavior of TC4 titanium alloy. Surf Technol, 2019, 48(11): 266
    [5]
    Liang S X, Yin L X, Zheng L Y, et al. The microstructural evolution and grain growth kinetics of TZ20 alloy during isothermal annealing. Mater Des, 2016, 99(6): 396
    [6]
    Li X X, Zhou Y, Ji X L, et al. Effects of sliding velocity on Tribo-oxides and wear behavior of Ti‒6Al‒4V alloy. Tribol Int, 2015, 91(2): 228
    [7]
    Li X X, Zhou Y, Li Y X, et al. Dry sliding wear characteristics of Ti‒6.5Al‒3.5Mo‒1.5Zr‒0.3Si alloy at various sliding speeds. Metall Mater Trans A, 2015, 46(9): 4360
    [8]
    郭薇, 李健, 黄淑梅, 等. 微动幅值对Ti‒6Al‒4V合金摩擦特性的影响. 钛工业进展, 2016, 33(5): 16

    Guo W, Li J, Huang S M, et al. Effect of fretting amplitude on friction properties of Ti‒6Al‒4V alloy. Titanium Ind Prog, 2016, 33(5): 16
    [9]
    刘勇, 杨德庄, 何世禹, 等. TC4合金的磨损率及磨损表面层的显微组织变化. 稀有金属材料与工程, 2005, 34(1): 128

    Liu Y, Yang D Z, He S Y, et al. Study on dry sliding wear of TC4 alloy in vacuum. Rare Met Mater Eng, 2005, 34(1): 128
    [10]
    Liu Y, Yang D Z, He S Y, et al. Drying sliding wear behavior of Ti‒6Al‒4V alloy in air. J Harbin Inst Technol, 2002, 9(1): 67
    [11]
    Liu Y, Yang D Z, He S Y, et al. Drying sliding wear of Ti‒6Al‒4V alloy in air and vacuum. Trans Nonferrous Met Soc China, 2003, 3(5): 1137
    [12]
    徐永利, 王世洪, 梁佑明, 等. 环境气氛对钛合金微动磨损特性的影响. 航空材料学报, 1990, 10(2): 13

    Xu Y L, Wang S H, Liang Y M, et al. Environmental atmosphere effect on fretting wear characteristics of titanium alloy. J Aeronaut Mater, 1990, 10(2): 13
    [13]
    杜洋, 吕晓仁, 李述军. 钛合金干摩擦磨损及减磨方法研究进展. 金属材料与冶金工程, 2021, 49(1): 30

    Du Y, Lü X R, Li S J. Research progress on dry friction and wear of titanium alloys and wear reduction methods. Met Mater Metall Eng, 2021, 49(1): 30
    [14]
    姚小飞, 谢发勤, 韩勇, 等. 温度对TC4钛合金摩擦磨损性能和摩擦系数的影响. 稀有金属材料与工程, 2012, 41(8): 1463

    Yao X F, Xie F Q, Han Y, et al. Effects of temperature on wear properties and friction coefficient of TC4 alloy. Rare Met Mater Eng, 2012, 41(8): 1463
    [15]
    姚小飞, 谢发勤, 韩勇, 等. TC4合金和P110油管钢摩擦磨损性能的比较. 稀有金属材料与工程, 2012, 41(9): 1539

    Yao X F, Xie F Q, Han Y, et al. Comparison of friction wear properties between TC4 titanium alloy and P110 tubing steel. Rare Met Mater Eng, 2012, 41(9): 1539
    [16]
    陆海峰, 缪强, 梁文萍, 等. 不同温度对TC4-DT钛合金摩擦磨损性能的影响. 南京航空航天大学学报, 2016, 48(1): 29 DOI: 10.16356/j.1005-2615.2016.01.005

    Lu H F, Miao Q, Liang W P, et al. Effect of different temperatures on tribological properties of TC4-DT alloy. J Nanjing Univ Aeronaut Astronaut, 2016, 48(1): 29 DOI: 10.16356/j.1005-2615.2016.01.005
    [17]
    Qu J, Blau P J, Watkins T R, et al. Friction and wear of titanium alloys sliding against metal, polymer, and ceramic counterfaces. Wear, 2005, 258(9): 1348 DOI: 10.1016/j.wear.2004.09.062
    [18]
    应扬, 李磊, 赵彬, 等. 钛合金的摩擦磨损性能及其改善方法. 有色金属材料与工程, 2019, 40(3): 49

    Ying Y, Li L, Zhao B, et al. Friction and wear properties of titanium alloys and the improving methods. Nonferrous Met Mater Eng, 2019, 40(3): 49
    [19]
    Zhang Q, Ding H, Zhou G, et al. Dry sliding wear behavior of a selected titanium alloy against counterface steel of different hardness levels. Metall Mater Trans A, 2019, 50: 220 DOI: 10.1007/s11661-018-4993-5
    [20]
    郭华锋, 孙涛, 李菊丽. 不同摩擦条件下TC4钛合金摩擦学性能研究. 热加工工艺, 2014, 43(10): 40

    Guo H F, Sun T, Li J L. Tribological properties of TC4 alloy under different friction conditions. Hot Working Technol, 2014, 43(10): 40
    [21]
    黄明吉, 韩建磊, 董秀萍. SLM-316L细丝脂润滑摩擦磨损性能. 工程科学学报, 2021, 43(6): 835

    Huang M J, Han J L, Dong X P. Tribological properties of the SLM-316L filament under the grease lubrication condition. Chin J Eng, 2021, 43(6): 835
    [22]
    黄明吉, 李斌, 董秀萍, 等. 丝径对316L不锈钢丝摩擦磨损行为的影响. 摩擦学学报, 2021, 41(2): 206 DOI: 10.16078/j.tribology.2020101

    Huang M J, Li B, Dong X P, et al. Effect of wire diameter on friction and wear behavior of 316L stainless steel wire. Tribology, 2021, 41(2): 206 DOI: 10.16078/j.tribology.2020101
    [23]
    Grützmacher P G, Rammacher S, Rathmann D, et al. Interplay between microstructural evolution and tribo-chemistry during dry sliding of metals. Friction, 2019, 7(6): 637 DOI: 10.1007/s40544-019-0259-5
    [24]
    Chelliah N, Kailas S V. Synergy between tribo-oxidation and strain rate response on governing the dry sliding wear behavior of titanium. Wear, 2009, 266(7): 704
    [25]
    Mao Y S, Wang L, Chen K M, et al. Tribo-layer and its role in dry sliding wear of Ti‒6Al‒4V alloy. Wear, 2013, 297(1): 1032
    [26]
    Cui X H, Mao Y S, Wei M X, et al. Wear characteristics of Ti‒6Al‒4V alloy at 20~400 ℃. Tribol Trans, 2012, 55(2): 185 DOI: 10.1080/10402004.2011.647387
    [27]
    Wang L, Zhang Q Y, Li X X, et al. Severe-to-mild wear transition of titanium alloys as a function of temperature. Tribol Lett, 2014, 53(3): 511 DOI: 10.1007/s11249-013-0289-5
    [28]
    Wang L, Zhang Q Y, Li X X, et al. Dry sliding wear behavior of Ti‒6.5Al‒3.5Mo‒1.5Zr‒0.3Si alloy. Metall Mater Trans A, 2014, 45(4): 2284 DOI: 10.1007/s11661-013-2167-z
    [29]
    何燕妮, 俞树荣, 李淑欣, 等. 摩擦氧化层对TC4合金磨损行为和摩擦系数的影响. 稀有金属材料与工程, 2021, 50(4): 1417

    He Y N, Yu S R, Li S X, et al. Effect of tribo-oxide layers on wear properties and coefficient of friction of TC4 alloy in fretting. Rare Met Mater Eng, 2021, 50(4): 1417
    [30]
    Straffelini G, Molinari A. Mild sliding wear of Fe‒0.2%C, Ti‒6%Al‒4%V and Al-7072: a comparative study. Tribol Lett, 2011, 41: 227
  • Related Articles

    [1]WANG Lei, GAO Jinchang, BAO Xiaogang, LIN Wanming, GUO Ruipeng. Effects of mechanical milling on microstructure and tensile properties of CoCrFeMnNi high-entropy alloys produced by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001
    [2]ZHONG Tao, GUO Rongzhen, LIN Xiaochuan, LIU Longting, WANG Jiaxin, XU Zhiqiang, GUO Shibo. Effect of plasma sintering process on the mechanical properties of WC/Cr3C2/La2O3 cutting tool materials[J]. Powder Metallurgy Technology, 2024, 42(6): 582-588. DOI: 10.19591/j.cnki.cn11-1974/tf.2024040013
    [3]LI Yuanyuan, WU Ying, PAN Xiaoqiang, LIU Tingwei. Preparation of boron carbide stainless steel composites by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 381-387. DOI: 10.19591/j.cnki.cn11-1974/tf.2023100003
    [4]WANG Na, WU Zhou, ZHU Qi, XI Sha, ZHANG Xiao, ZHOU Sha, LI Jing, WANG Yuqing. Preparation of Mo–Ni alloys by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 361-366. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030015
    [5]WANG Bin, CHEN Ruizhi, LI Jianfeng, CHEN Pengqi, CHENG Jigui. Preparation of binderless SiCw/WC cemented carbides by spark plasma sintering[J]. Powder Metallurgy Technology, 2023, 41(1): 38-43. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050012
    [6]Fe50Mn30Co10Cr10-xNbC high-entropy alloy composites prepared by SPS technology and characterization of properties[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010004
    [7]YAN Xing-heng, ZHOU Xin-gui, WANG Hong-lei. Research progress of B4C prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2022, 40(6): 516-526. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070001
    [8]WU Xiao-jun. Preparation parameter optimization and mechanical properties of the graphene-reinforced TC11 titanium alloys prepared by spark plasma sintering used for engine[J]. Powder Metallurgy Technology, 2022, 40(4): 291-295. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110010
    [9]SHEN Dan-ni, WANG Chao-ning, GAO Peng, KONG Jian. Ultrafine grained W–Ti alloys prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2021, 39(2): 165-171. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110008
    [10]DENG Lin, JIANG Li-hua. Microstructure and mechanical properties of Ti-21.5Nb alloy prepared by powder sintering used for internal combustion engine[J]. Powder Metallurgy Technology, 2020, 38(3): 201-205. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.006

Catalog

    Article Metrics

    Article views (423) PDF downloads (67) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return