Citation: | ZHAO Bo, ZHANG Xiaomin, ZHAO Zhipeng, WU Qiong, GAO Xin. First-principles calculation and experimental study on the influence mechanism of diffusion activation energy of Cu atoms in current-assisted sintering[J]. Powder Metallurgy Technology, 2024, 42(6): 563-572. DOI: 10.19591/j.cnki.cn11-1974/tf.2023020003 |
The effect of the applied electric field on the diffusion activation energy of Cu crystal was studied by the first-principles calculation and current assisted sintering. The results show that the applied electric field and current reduce the difficulty of Cu vacancy generation, but the atomic migration energy is almost unchanged, resulting in a slight decrease in diffusion activation energy after reaching the electric field intensity (current density) threshold (2 V·Å‒1 (307.1 A·cm‒2)), and a sharp decrease after exceeding the threshold; finally, after the electric field intensity (current density) reaching 5 V·Å‒1 (708.5 A·cm‒2), the vacancy formation energy gradually decreases to 0, the diffusion activation energy drops to the critical value, and the critical value of diffusion activation energy decreases by about 60.2% compared with that of the threshold value. The diffusion activation energy shows a regular decline trend under the action of electric field or current, and the experimental results show a good positive correlation with the first-principle simulation results.
[1] |
Choi J, Sung H M, Roh K B, et al. Fabrication of sintered tungsten by spark plasma sintering and investigation of thermal stability. Int J Refract Met Hard Mater, 2017, 69: 164 DOI: 10.1016/j.ijrmhm.2017.08.013
|
[2] |
Terentyev D, M Vilémová, Yin C, et al. Assessment of mechanical properties of SPS-produced tungsten including effect of neutron irradiation. Int J Refract Met Hard Mater, 2020, 89: 105207 DOI: 10.1016/j.ijrmhm.2020.105207
|
[3] |
Deng S H, Li J N, Li R D, et al. The effect of particle size on the densification kinetics of tungsten powder during spark plasma sintering. Int J Refract Met Hard Mater, 2020, 93: 105358 DOI: 10.1016/j.ijrmhm.2020.105358
|
[4] |
Li J, Ding S Y, Zhu J S, et al. Current-density dependence of activation energy in high-Tc superconductor HgBa2Ca2Cu3O8+ x. J Appl Phys, 1995, 77(12): 6398 DOI: 10.1063/1.359113
|
[5] |
Garay J E, Anselmi-Tamburini U, Munir Z A. Enhanced growth of intermetallic phases in the Ni–Ti system by current effects. Acta Mater, 2003, 51(15): 4487 DOI: 10.1016/S1359-6454(03)00284-2
|
[6] |
Kondo T, Kuramoto T, Kodera Y, et al. Enhanced growth of Mo2C formed in MoC diffusion couple by pulsed DC current. J Jpn Soc Powder Powder Metall, 2008, 55(9): 643 DOI: 10.2497/jjspm.55.643
|
[7] |
Deng S H, Li R D, Yuan T C, et al. Direct current-enhanced densification kinetics during spark plasma sintering of tungsten powder. Scr Mater, 2018, 143: 25 DOI: 10.1016/j.scriptamat.2017.09.009
|
[8] |
娄鹤子, 王海滨, 刘雪梅, 等. WC-Co硬质合金摩擦磨损行为的分子动力学模拟. 粉末冶金技术, 2022, 40(5): 8
Lou H Z, Wang H B, Liu X M, et al. Molecular dynamics simulation on friction and wear behavior of WC–Co cemented carbides. Powder Metall Technol, 2022, 40(5): 8
|
[9] |
Mukherjee S, Banwait A, Grixti S, et al. Adsorption and diffusion of lithium and sodium on defective rhenium disulfide: A first principles study. ACS Appl Mater Interfaces, 2018, 10(6): 5373 DOI: 10.1021/acsami.7b13604
|
[10] |
Yuan Z H, Kong X G, Ma S G, et al. Adsorption and diffusion mechanism of hydrogen atom on the Li2O (111) and (110) surfaces from first principles calculations. J Nucl Mater, 2018, 513: 232
|
[11] |
Lu H J, Wu H, Zou N, et al. First-principles investigation on diffusion mechanism of alloying elements in dilute Zr alloys. Acta Mater, 2018, 154: 161 DOI: 10.1016/j.actamat.2018.05.015
|
[12] |
Lu C, Yang J, Zhao Y, et al. Influence of applied electric field on atom diffusion behavior and mechanism for W/NiFe interface in diffusion bonding of steel/NiFe interlayer/W by spark plasma sintering. Appl Surf Sci, 2020, 541: 148516
|
[13] |
Zhang L Y, Peng C T, Shi J, et al. Surface alloying of chromium/tungsten/stannum on pure nickel and theoretical analysis of strengthening mechanism. Appl Surf Sci, 2020, 532: 147477 DOI: 10.1016/j.apsusc.2020.147477
|
[14] |
Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140(4A): A1133 DOI: 10.1103/PhysRev.140.A1133
|
[15] |
Peng H W, Perdew J P. Rehabilitation of the Perdew-Burke-Ernzerhof generalized gradient approximation for layered materials. Phys Rev B Condens Matter, 2017, 95(8): 081105 DOI: 10.1103/PhysRevB.95.081105
|
[16] |
You J S, Fang S A, Xu S Y, et al. Berry curvature dipole current in transition metal dichalcogenides family. Phys Rev, 2018, 98(12): 121109 DOI: 10.1103/PhysRevB.98.121109
|
[17] |
Hwang J, Noh S H, Han B. Design of active bifunctional electrocatalysts using single atom doped transition metal dichalcogenides. Appl Surf Sci, 2019, 471: 545 DOI: 10.1016/j.apsusc.2018.11.147
|
[18] |
Zhang X, Grabowski B, Körmann F, et al. Accurate electronic free energies of the 3 d, 4 d, and 5 d transition metals at high temperatures. Phys Rev B Condens Matter, 2017, 95(16): 165126 DOI: 10.1103/PhysRevB.95.165126
|
[19] |
Kittel C. Introduction to Solid State Physics. 8th Ed. Weenheim: Wiley, 2004
|
[20] |
wang Y, Curtarolo S, Jiang C, et al. Ab initio lattice stability in comparison with CALPHAD lattice stability. Calphad, 2004, 28(1): 79 DOI: 10.1016/j.calphad.2004.05.002
|
[21] |
Naghavi S S, Hegde V I, Wolverton C. Diffusion coefficients of transition metals in fcc cobalt. Acta Mater, 2017, 132: 467 DOI: 10.1016/j.actamat.2017.04.060
|
[22] |
Esfandiarpour A, Nasrabadi M N. Vacancy formation energy in CuNiCo equimolar alloy and CuNiCoFe high entropy alloy: ab initio based study. Calphad, 2019, 66(1): 101634
|
[23] |
王顺花. Cu中空位的计算机模拟. 兰州铁道学院学报, 1997, 16(4): 43
Wang S H. Computer simulation of vacancies in Cu. J Lanzhou Railway Inst, 1997, 16(4): 43
|
[24] |
Makov G, Shah R, Payne M C. Periodic boundary conditions in ab initio calculations. II. Brillouin-zone sampling for aperiodic systems. Phys Rev B Condens Matter, 1996, 53(23): 15513
|
[25] |
Yu X X, Thompson G B, Weinberger C R. Influence of carbon vacancy formation on the elastic constants and hardening mechanisms in transition metal carbides. J Eur Ceram Soc, 2015, 35(1): 95 DOI: 10.1016/j.jeurceramsoc.2014.08.021
|
[26] |
Wang J, Raj R. Activation energy for the sintering of two-phase alumina/zirconia ceramics. J Am Ceram Soc, 1991, 74(8): 1959 DOI: 10.1111/j.1151-2916.1991.tb07815.x
|
[27] |
张剑平, 左红艳, 罗军明, 等. 微波场中铜粉烧结颈形成和晶粒长大动力学. 材料热处理学报, 2018, 39(6): 7
Zhang J P, Zuo H Y, Luo J M, et al. Neek formation and grain growth kinetics of copper powder during microwave sintering. Trans Mater Heat Treat, 2018, 39(6): 7
|
[28] |
Demuynck M, Erauw J P, Biest O V D, et al. Densification of alumina by SPS and HP: A comparative study. J Eur Ceram Soc, 2012, 32(9): 1957 DOI: 10.1016/j.jeurceramsoc.2011.10.031
|
[1] | CHEN Bing-wei, YANG Xue-feng, ZHU Zhen-dong, LI Zheng-xin. Surface morphology characterization of diamond etched by CeO2[J]. Powder Metallurgy Technology, 2022, 40(4): 318-324. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090018 |
[2] | LIN Bing-tao, HE Jun, LIU Zhong-wei, WANG Cheng-yang, LI Ming, SUN Xiao-xia, ZHOU Shu-qiu. Fracture morphology and microstructure analysis of Mo–La nozzles for solid rocket motor[J]. Powder Metallurgy Technology, 2022, 40(1): 80-85. DOI: 10.19591/j.cnki.cn11-1974/tf.2021070003 |
[3] | YANG Wen-tao, XUE Bing, DAI Yong-fu, PU Chuan-jin, XIAO Ding-jun. Effect of milling time on the particle size distribution and morphology of tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(5): 423-428. DOI: 10.19591/j.cnki.cn11-1974/tf.2020020010 |
[4] | SI Jia-jia, SU Xiao-lei. Preparation of ultrafine spherical nickel powders[J]. Powder Metallurgy Technology, 2021, 39(2): 177-183. DOI: 10.19591/j.cnki.cn11-1974/tf.2019090003 |
[5] | SUN Tian-hao, HAO Su-ju, JIANG Wu-feng, ZHANG Yu-zhu. Preparation and morphology analysis of nano-sized iron oxide[J]. Powder Metallurgy Technology, 2021, 39(1): 76-80. DOI: 10.19591/j.cnki.cn11-1974/tf.2019080008 |
[6] | ZHANG Bao-hong, TANG Liang-liang. Study on the erosion morphology of W-Ni-Sr electrode[J]. Powder Metallurgy Technology, 2020, 38(4): 289-294. DOI: 10.19591/j.cnki.cn11-1974/tf.2019050007 |
[7] | LUO Xiao-qiang, HAN Yong-jun, FENG Yun-xiao, YU Hao, YU Chun-bo, ZHAO Li-heng. Effect of bucket temperature on grain morphology of semi-solid melt A356 by micro fused-casting[J]. Powder Metallurgy Technology, 2019, 37(3): 170-174. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.002 |
[8] | Hydrothermal synthesis of micro-copper powders with special morphology[J]. Powder Metallurgy Technology, 2010, 28(3): 200-203. |
[9] | Du Huiling, Wang Jianzhong, Chen Danfeng, Cang Daqiang. Effects of pulsed electromagnetic field on morphology of cobalt oxalate powders[J]. Powder Metallurgy Technology, 2010, 28(2): 96-100. |
[10] | Xu Tianhan, Wang Danghui. Effect of inner diameter of delivery tube end of atomizer on morphology and size distribution of free-lead solder powder[J]. Powder Metallurgy Technology, 2009, 27(3): 197-202. |
1. |
王哲昊,吕绪明. 等离子喷涂技术在工程陶瓷涂层制备中的应用现状及展望. 材料导报. 2024(11): 52-61 .
![]() | |
2. |
陈开旺,张鹏林,李树旺,牛显明,胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能. 材料研究学报. 2023(01): 39-46 .
![]() | |
3. |
张一帆,王曲,王刚,刘鹏程,张琪,司瑶晨. 黏结剂种类对铝酸镧涂层材料性能的影响. 耐火材料. 2022(02): 123-126 .
![]() | |
4. |
张志辉,李明. 316L钢表面超音速火焰喷涂Fe基粉末涂层显微结构及摩擦性能分析. 粉末冶金技术. 2022(04): 351-355+361 .
![]() | |
5. |
蔡浩,龚关,梁雅琪,仇秀梅,刘可. 莫来石在醇基铸造涂料中的试验研究. 中国新技术新产品. 2022(21): 26-28+145 .
![]() |