Citation: | SU Zishan, CAI Xinzhi, XIONG Pingshang, TONG Peiyun, ZHU Liu. Preparation and properties of P-type Bi2Te3-based materials with high preferred orientation[J]. Powder Metallurgy Technology, 2025, 43(1): 79-85. DOI: 10.19591/j.cnki.cn11-1974/tf.2023020009 |
Using the Bi0.4Sb1.6Te3+3%Te (mass fraction) melting crystal rods as the raw materials, the alloy ingots with good orientation were prepared by water-cooled copper crucible maglev melting technology. The P-type Bi2Te3-based alloy powders were obtained by grinding and sieving the alloy ingots with hammer. The P-type Bi2Te3-based thermoelectric materials with the preferred orientation along the (00l) crystal face were prepared by vacuum hot pressing sintering technology. The micro-morphology and preferred orientation of the ingots, alloy powders and hot pressed sintered blocks were studied, as well as the effect of particle size on the electrical properties of the sintered blocks. The results show that the powders after quenching, crushing, and screening are highly oriented along the (00l) crystal face. The blocks prepared by using 100~200 mesh size powders sintered at 500 ℃ and 40 MPa have the power factor of 44.5 μW·cm−1·K−2, which can cut the thin slices with the thickness of 0.3 mm, with the pass rate of more than 90%. Matching the conventional 127 pair 4 cm×4 cm thermoelectric cooler (TEC) with the zone melting N-type, the maximum temperature difference of the model TEC1-
[1] |
郭涛, 李硕, 姚雅萱, 等. Bi–Te基薄膜热电材料的研究进展. 材料导报, 2022, 36(4): 131
Guo T, Li S, Yao Y X, et al. Progress of Bi–Te based thin film thermoelectric materials. Mater Rep, 2022, 36(4): 131
|
[2] |
阚宗祥, 项求胜, 陈磊, 等. Bi2Te3基区熔晶棒头尾料的资源化处理与热电性能优化. 有色金属工程, 2019, 9(4): 20
Kan Z X, Xiang Q S, Chen L, et al. Resource processing and thermoelectric properties optimization of Bi2Te3 base zone melting crystals bar head and tail. Nonferrous Met Eng, 2019, 9(4): 20
|
[3] |
Qiu J H, Yan Y G, Xie H Y, et al. Achieving superior performance in thermoelectric Bi0.4Sb1.6Te3.72 by enhancing texture and inducing high-density line defects. Sci China Mater, 2021, 64(6): 1507
|
[4] |
王晴, 刘子杨, 赵沙沙, 等. Bi2Te3基热电材料的电输运性能研究进展. 河北大学学报(自然科学版), 2021, 41(4): 349
Wang Q, Liu Z Y, Zhao S S, et al. Research progress of electrical transport properties of Bi2Te3-based thermoelectric materials. J Hebei Univer Nat Sci, 2021, 41(4): 349
|
[5] |
Fan P, Li R Y, Chen Y X, et al. High thermoelectric performance achieved in Bi0.4Sb1.6Te3 films with high (00l) orientation via magnetron sputtering. J Eur Ceram Soc, 2020, 40(12): 4016
|
[6] |
陈赟斐, 魏锋, 王赫, 等. 高性能Bi2Te3- xSe x热电薄膜的可控生长. 物理学报, 2021, 70(20): 27303
Chen Y F, Wei F, Wang H, et al. Structural control for high performance Bi2Te3− xSe x thermoelectric thin films. Acta Phys Sin, 2021, 70(20): 27303
|
[7] |
Wu Z H, Mu E Z, Che Z X, et al. Nanoporous (00l)-oriented Bi2Te3 nanoplate film for improved thermoelectric performance. J Alloys Compd, 2020, 828: 154239 DOI: 10.1016/j.jallcom.2020.154239
|
[8] |
石建磊, 裴俊, 张波萍, 等. 机械合金化结合放电等离子烧结技术制备热电材料的研究进展. 粉末冶金技术, 2021, 39(1): 4
Shi J L, Fei J, Zhang B P, et al. Research progress on processing of thermoelectric materials by mechanical alloying combined with spark plasma sintering. Powder Metall Technol, 2021, 39(1): 4
|
[9] |
王小宇, 江威, 朱彬, 等. SiC对粉碎烧结法制备P型Bi0.5Sb1.5Te3合金热电性能的影响. 粉末冶金技术, 2022, 40(1): 53
Wang X Y, Jiang W, Zhu B, et al. Effect of SiC on thermoelectric properties of P-type Bi0.5Sb1.5Te3 alloy prepared by pulverizing and sintering method. Powder Metall Technol, 2022, 40(1): 53
|
[10] |
Kim S I, Lee K H, Mun H A, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348(6230): 109 DOI: 10.1126/science.aaa4166
|
[11] |
魏少红, 王忠, 陈晖, 等. 急冷甩带对Bi2Te2.7Se0.3热电材料微观结构与电性能的影响. 稀有金属, 2009, 33(4): 534
Wei S H, Wang Z, Chen H, et al. Effect of melt spinning process on microstructure and electrical properties of Bi2Te2.7Se0.3 thermoelectric material. Chin J Rare Met, 2009, 33(4): 534
|
[12] |
Cai X Z, Fan X A, Rong Z Z, et al. Improved thermoelectric properties of Bi2Te3− xSe x alloys by melt spinning and resistance pressing sintering. J Phys D Appl Phys, 2014, 47(11): 115101 DOI: 10.1088/0022-3727/47/11/115101
|
[13] |
刘国栋, 李养贤, 胡海宁, 等. 甩带Fe85Ga15合金的巨磁致伸缩研究. 物理学报, 2004, 53(9): 3191 DOI: 10.7498/aps.53.3191
Liu G D, Li Y X, Hu H N, et al. Giant magnetostriction of melt-spun Fe85Ga15 ribbons. Acta Phys Sin, 2004, 53(9): 3191 DOI: 10.7498/aps.53.3191
|
[14] |
Shang H J, Ding F Z, Deng Y, et al. Highly (00l)-oriented Bi2Te3/Te heterostructure thin films with enhanced power factor. Nanoscale, 2018, 10(43): 20189 DOI: 10.1039/C8NR07112H
|
[15] |
Lotgering F K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures. J Inorg Nucl Chem, 1959, 9(2): 113 DOI: 10.1016/0022-1902(59)80070-1
|
[16] |
蔡新志, 朱刘. 热压P型Bi2Te3基合金的结构演化和热电性能. 热加工工艺, 2018, 47(13): 79
Cai X Z, Zhu L. Structural evolution and thermoelectric properties of hot pressed P-type Bi2Te3-base alloy. Hot Work Technol 2018, 47(13): 79
|
[17] |
Schultz J M, Mchugh J P, Tiller W A. Effects of heavy deformation and annealing on the electrical properties of Bi2Te3. J Appl Phys, 1962, 33(8): 2443 DOI: 10.1063/1.1728990
|
[18] |
Hu J, Fan X A, Zhang C C, et al. The initial powder-refinement-induced donor-like effect and nonlinear change of thermoelectric performance for Bi2Te3-based polycrystalline bulks. Semicond Sci Technol, 2017, 32(7): 075004 DOI: 10.1088/1361-6641/aa6b89
|
1. |
段继平,唐湘林,盛俊英,彭子超,王旭青,邹金文. 热挤压态FGH95合金热变形特性. 粉末冶金技术. 2024(01): 36-44 .
![]() | |
2. |
谷树超,王松,李俊. 基于失效分析的给水泵泵轴显微组织和力学性能对比研究. 电力科技与环保. 2021(04): 38-46 .
![]() | |
3. |
刘健,叶飞,王旭青,彭子超,罗学军. 粉末高温合金Udimet720Liγ′强化相析出行为. 粉末冶金技术. 2021(06): 499-504+525 .
![]() |