AdvancedSearch
SU Zishan, CAI Xinzhi, XIONG Pingshang, TONG Peiyun, ZHU Liu. Preparation and properties of P-type Bi2Te3-based materials with high preferred orientation[J]. Powder Metallurgy Technology, 2025, 43(1): 79-85. DOI: 10.19591/j.cnki.cn11-1974/tf.2023020009
Citation: SU Zishan, CAI Xinzhi, XIONG Pingshang, TONG Peiyun, ZHU Liu. Preparation and properties of P-type Bi2Te3-based materials with high preferred orientation[J]. Powder Metallurgy Technology, 2025, 43(1): 79-85. DOI: 10.19591/j.cnki.cn11-1974/tf.2023020009

Preparation and properties of P-type Bi2Te3-based materials with high preferred orientation

More Information
  • Corresponding author:

    CAI Xinzhi, E-mail: xinzhi.cai@vitalchem.com

  • Received Date: June 18, 2023
  • Accepted Date: June 18, 2023
  • Available Online: June 26, 2023
  • Using the Bi0.4Sb1.6Te3+3%Te (mass fraction) melting crystal rods as the raw materials, the alloy ingots with good orientation were prepared by water-cooled copper crucible maglev melting technology. The P-type Bi2Te3-based alloy powders were obtained by grinding and sieving the alloy ingots with hammer. The P-type Bi2Te3-based thermoelectric materials with the preferred orientation along the (00l) crystal face were prepared by vacuum hot pressing sintering technology. The micro-morphology and preferred orientation of the ingots, alloy powders and hot pressed sintered blocks were studied, as well as the effect of particle size on the electrical properties of the sintered blocks. The results show that the powders after quenching, crushing, and screening are highly oriented along the (00l) crystal face. The blocks prepared by using 100~200 mesh size powders sintered at 500 ℃ and 40 MPa have the power factor of 44.5 μW·cm−1·K−2, which can cut the thin slices with the thickness of 0.3 mm, with the pass rate of more than 90%. Matching the conventional 127 pair 4 cm×4 cm thermoelectric cooler (TEC) with the zone melting N-type, the maximum temperature difference of the model TEC1-12706 devices can reach 70 ℃, providing the preparation direction of the high-performance Bi2Te3-based thermoelectric materials.

  • [1]
    郭涛, 李硕, 姚雅萱, 等. Bi–Te基薄膜热电材料的研究进展. 材料导报, 2022, 36(4): 131

    Guo T, Li S, Yao Y X, et al. Progress of Bi–Te based thin film thermoelectric materials. Mater Rep, 2022, 36(4): 131
    [2]
    阚宗祥, 项求胜, 陈磊, 等. Bi2Te3基区熔晶棒头尾料的资源化处理与热电性能优化. 有色金属工程, 2019, 9(4): 20

    Kan Z X, Xiang Q S, Chen L, et al. Resource processing and thermoelectric properties optimization of Bi2Te3 base zone melting crystals bar head and tail. Nonferrous Met Eng, 2019, 9(4): 20
    [3]
    Qiu J H, Yan Y G, Xie H Y, et al. Achieving superior performance in thermoelectric Bi0.4Sb1.6Te3.72 by enhancing texture and inducing high-density line defects. Sci China Mater, 2021, 64(6): 1507
    [4]
    王晴, 刘子杨, 赵沙沙, 等. Bi2Te3基热电材料的电输运性能研究进展. 河北大学学报(自然科学版), 2021, 41(4): 349

    Wang Q, Liu Z Y, Zhao S S, et al. Research progress of electrical transport properties of Bi2Te3-based thermoelectric materials. J Hebei Univer Nat Sci, 2021, 41(4): 349
    [5]
    Fan P, Li R Y, Chen Y X, et al. High thermoelectric performance achieved in Bi0.4Sb1.6Te3 films with high (00l) orientation via magnetron sputtering. J Eur Ceram Soc, 2020, 40(12): 4016
    [6]
    陈赟斐, 魏锋, 王赫, 等. 高性能Bi2Te3- xSe x热电薄膜的可控生长. 物理学报, 2021, 70(20): 27303

    Chen Y F, Wei F, Wang H, et al. Structural control for high performance Bi2Te3− xSe x thermoelectric thin films. Acta Phys Sin, 2021, 70(20): 27303
    [7]
    Wu Z H, Mu E Z, Che Z X, et al. Nanoporous (00l)-oriented Bi2Te3 nanoplate film for improved thermoelectric performance. J Alloys Compd, 2020, 828: 154239 DOI: 10.1016/j.jallcom.2020.154239
    [8]
    石建磊, 裴俊, 张波萍, 等. 机械合金化结合放电等离子烧结技术制备热电材料的研究进展. 粉末冶金技术, 2021, 39(1): 4

    Shi J L, Fei J, Zhang B P, et al. Research progress on processing of thermoelectric materials by mechanical alloying combined with spark plasma sintering. Powder Metall Technol, 2021, 39(1): 4
    [9]
    王小宇, 江威, 朱彬, 等. SiC对粉碎烧结法制备P型Bi0.5Sb1.5Te3合金热电性能的影响. 粉末冶金技术, 2022, 40(1): 53

    Wang X Y, Jiang W, Zhu B, et al. Effect of SiC on thermoelectric properties of P-type Bi0.5Sb1.5Te3 alloy prepared by pulverizing and sintering method. Powder Metall Technol, 2022, 40(1): 53
    [10]
    Kim S I, Lee K H, Mun H A, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348(6230): 109 DOI: 10.1126/science.aaa4166
    [11]
    魏少红, 王忠, 陈晖, 等. 急冷甩带对Bi2Te2.7Se0.3热电材料微观结构与电性能的影响. 稀有金属, 2009, 33(4): 534

    Wei S H, Wang Z, Chen H, et al. Effect of melt spinning process on microstructure and electrical properties of Bi2Te2.7Se0.3 thermoelectric material. Chin J Rare Met, 2009, 33(4): 534
    [12]
    Cai X Z, Fan X A, Rong Z Z, et al. Improved thermoelectric properties of Bi2Te3− xSe x alloys by melt spinning and resistance pressing sintering. J Phys D Appl Phys, 2014, 47(11): 115101 DOI: 10.1088/0022-3727/47/11/115101
    [13]
    刘国栋, 李养贤, 胡海宁, 等. 甩带Fe85Ga15合金的巨磁致伸缩研究. 物理学报, 2004, 53(9): 3191 DOI: 10.7498/aps.53.3191

    Liu G D, Li Y X, Hu H N, et al. Giant magnetostriction of melt-spun Fe85Ga15 ribbons. Acta Phys Sin, 2004, 53(9): 3191 DOI: 10.7498/aps.53.3191
    [14]
    Shang H J, Ding F Z, Deng Y, et al. Highly (00l)-oriented Bi2Te3/Te heterostructure thin films with enhanced power factor. Nanoscale, 2018, 10(43): 20189 DOI: 10.1039/C8NR07112H
    [15]
    Lotgering F K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures. J Inorg Nucl Chem, 1959, 9(2): 113 DOI: 10.1016/0022-1902(59)80070-1
    [16]
    蔡新志, 朱刘. 热压P型Bi2Te3基合金的结构演化和热电性能. 热加工工艺, 2018, 47(13): 79

    Cai X Z, Zhu L. Structural evolution and thermoelectric properties of hot pressed P-type Bi2Te3-base alloy. Hot Work Technol 2018, 47(13): 79
    [17]
    Schultz J M, Mchugh J P, Tiller W A. Effects of heavy deformation and annealing on the electrical properties of Bi2Te3. J Appl Phys, 1962, 33(8): 2443 DOI: 10.1063/1.1728990
    [18]
    Hu J, Fan X A, Zhang C C, et al. The initial powder-refinement-induced donor-like effect and nonlinear change of thermoelectric performance for Bi2Te3-based polycrystalline bulks. Semicond Sci Technol, 2017, 32(7): 075004 DOI: 10.1088/1361-6641/aa6b89
  • Related Articles

    [1]YUAN Zhenyu, CHANG Cheng, QI Huiying, XIAO Haibo, YAN Xingchen. Effects of micro-TiC particles on microstructure and mechanical properties of selective laser melting Inconel 625 alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 94-101. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070005
    [2]GAO Jiaojiao, PING Ping, HU Shiheng, SONG Jinpeng. Effect of sintering temperature on microstructure and mechanical properties of Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics[J]. Powder Metallurgy Technology, 2024, 42(2): 115-121. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040006
    [3]GAO Jiaojiao, PING Ping, LIU Jiabao, SONG Jinpeng. Effect of Re content on microstructure and mechanical properties of TiCN–WC–HfN ceramics[J]. Powder Metallurgy Technology, 2024, 42(1): 53-58. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040001
    [4]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [5]LIU Xiao-min, GAO Hong-liang, YANG Jing-ran, FU Zheng-rong, LI Xing-fu, LI Cong, YANG Yi, LIU Huan, ZHU Xin-kun. Microstructure and mechanical properties of pure titanium prepared by powder metallurgy combined with hot extrusion and rotary swagin[J]. Powder Metallurgy Technology, 2022, 40(3): 239-244. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050015
    [6]LI Xing-yu, ZHANG Lin, QIN Ming-li, WEI Zi-chen, QUE Zhong-you, QU Xuan-hui. Effect of jet milling processing on microstructure and mechanical properties of the sintered tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(3): 251-257. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030003
    [7]SONG Jin-peng, YU Cheng-gong, GAO Jiao-jiao, LÜ Ming. Effect of WC content on the microstructure and mechanical properties of TiCN-HfN cermet tool materials[J]. Powder Metallurgy Technology, 2020, 38(4): 243-248. DOI: 10.19591/j.cnki.cn11-1974/tf.2020030004
    [8]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
    [9]XIE Jun-cai, SONG Jin-peng, GAO Jiao-jiao, CAO Lei. Effects of HfN content on microstructure and mechanical properties of ZrB2-HfN ceramic materials[J]. Powder Metallurgy Technology, 2019, 37(6): 416-421. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.06.003
    [10]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
  • Cited by

    Periodical cited type(3)

    1. 段继平,唐湘林,盛俊英,彭子超,王旭青,邹金文. 热挤压态FGH95合金热变形特性. 粉末冶金技术. 2024(01): 36-44 . 本站查看
    2. 谷树超,王松,李俊. 基于失效分析的给水泵泵轴显微组织和力学性能对比研究. 电力科技与环保. 2021(04): 38-46 .
    3. 刘健,叶飞,王旭青,彭子超,罗学军. 粉末高温合金Udimet720Liγ′强化相析出行为. 粉末冶金技术. 2021(06): 499-504+525 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return