AdvancedSearch
HAO Xu, ZHANG Deyin, JIA Baorui, WU Haoyang, Ma Zhijun, WANG Shuaishuai, ZHANG Pengcheng, QIN Mingli, QU Xuanhui. Research progress of high-speed steel prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2024, 42(6): 665-673. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030005
Citation: HAO Xu, ZHANG Deyin, JIA Baorui, WU Haoyang, Ma Zhijun, WANG Shuaishuai, ZHANG Pengcheng, QIN Mingli, QU Xuanhui. Research progress of high-speed steel prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2024, 42(6): 665-673. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030005

Research progress of high-speed steel prepared by powder metallurgy

More Information
  • As the tooling materials with high strength and toughness, the high speed steels (HSS) are widely used in the manufacture of cutting tools, moulds, rolls, and wear parts. The production of HSS by powder metallurgy not only avoids the problems of segregation and the formation of coarse reticulated carbides caused by inhomogeneous composition in the liquid phase sintering process, but also provides the products with fine grain size, excellent mechanical properties, and long service life. The general process and development of the HSS production by powder metallurgy were summarized in this paper, including powder making, forming, and the current development status at home and abroad, the problems of the current powder metallurgy HSS were pointed out, and the future development trend was prospected.

  • [1]
    Mesquita R A, Barbosa C A. High-speed steels produced by conventional casting, spray forming and powder metallurgy. Mater Sci Forum, 2005, 498-499: 244 DOI: 10.4028/www.scientific.net/MSF.498-499.244
    [2]
    徐桂丽, 黄鹏, 孙溪, 等. 高速钢制备和热处理工艺的研究现状及发展趋势. 中国材料进展, 2020, 39(1): 70

    Xu G L, Huang P, Sun X, et al. Research status and development trend of high-speed-steel’s preparation and heat treatment process. Mater China, 2020, 39(1): 70
    [3]
    Godec M, Večko P T, Šetina B B, et al. Surface and bulk carbide transformations in high-speed steel. Sci Rep, 2015, 5: 16202 DOI: 10.1038/srep16202
    [4]
    魏世忠, 徐流杰. 钢铁耐磨材料研究进展. 金属学报, 2020, 56(4): 523 DOI: 10.11900/0412.1961.2019.00370

    Wei S Z, Xu L J. Review on research progress of steel and iron wear-resistant materials. Acta Metall Sin, 2020, 56(4): 523 DOI: 10.11900/0412.1961.2019.00370
    [5]
    Peng H L, Hu L, Ngai T W, et al. Effects of austenitizing temperature on microstructure and mechanical property of a 4-GPa-grade PM high-speed steel. Mater Sci Eng A, 2018, 719: 21 DOI: 10.1016/j.msea.2018.02.010
    [6]
    吴元昌. 粉末冶金高速钢生产工艺的发展. 粉末冶金工业, 2007, 17(2): 30

    Wu Y C. Evolution of technology of powder metallurgy high speed steel. Powder Metall Ind, 2007, 17(2): 30
    [7]
    Hetzner D W. Refining carbide size distributions in M1 high speed steel by processing and alloying. Mater Charact, 2001, 46(2-3): 175 DOI: 10.1016/S1044-5803(01)00121-8
    [8]
    陈顺民, 张庆, 祝新发. 粉末冶金高速钢的特性. 热处理工艺及应用, 热处理, 2008(2): 14

    Chen S M, Zhang Q, Zhu X F. Characteristics, heat treatment process and application of PM high speed steels. Heat Treatment, 2008(2): 14
    [9]
    杨芳, 李延丽, 申承秀, 等. 钛及钛合金粉末制备与成形工艺研究进展. 粉末冶金技术, 2023, 41(4): 330

    Yang F, Li Y L, Shen C X, et al. Research progress on preparation and forming of titanium and titanium alloy powders. Powder Metall Technol, 2023, 41(4): 330
    [10]
    王丽仙, 葛昌纯, 郭双全, 等. 粉末冶金高速钢的发展. 材料导报, 2010, 24(S1): 459

    Wang L X, Ge C C, Guo S Q, et al. Development of powder metallurgy high speed steels. Mater Rep, 2010, 24(S1): 459
    [11]
    曹勇家, 钟海林, 郝权, 等. 粉末冶金生产工艺的两大发展. 粉末冶金工业, 2011, 21: 45

    Cao J Y, Zhong H L, Hao Q, et al. The two breakthrougies of powder metallurgy development. Powder Metall Ind, 2011, 21: 45
    [12]
    Angers R, Champagne B, Tremblay R. PM high speed steels enriched in C, V and Ti. Met Powder Rep, 1990, 45(12): 844 DOI: 10.1016/0026-0657(90)90577-4
    [13]
    Bergman F, Hedenqvist P, Hogmark S. The influence of primary carbides and test parameters on abrasive and erosive wear of selected PM high speed steels. Tribol Int, 1997, 30(3): 183 DOI: 10.1016/S0301-679X(96)00040-0
    [14]
    Trabadelo V, Giménez S, Iturriza I. Development of powder metallurgy T42 high speed steel for structural applications. J Mater Process Technol, 2008, 202(1-3): 521 DOI: 10.1016/j.jmatprotec.2007.09.062
    [15]
    Zhang D Y, Lu T Y, Hao X, et al. Effect of heat treatment on microstructure and properties of powder metallurgy high-speed steel prepared by hot isostatic pressing. Metals, 2024, 14(10): 1160
    [16]
    Chen N, Luo R, Xiong H W, et al. Dense M2 high speed steel containing core-shell MC carbonitrides using high-energy ball milled M2/VN composite powders. Mater Sci Eng A, 2020, 771: 138628 DOI: 10.1016/j.msea.2019.138628
    [17]
    Wang H B, Hong D, Hou L G, et al. Influence of tempering temperatures on the microstructure, secondary carbides and mechanical properties of spray-deposited AISI M3: 2 high-speed steel. Mater Chem Phys, 2020, 255: 123554 DOI: 10.1016/j.matchemphys.2020.123554
    [18]
    Jovičević-Klug P, Puša G, Jovičević-Klug M, et al. Influence of heat treatment parameters on effectiveness of deep cryogenic treatment on properties of high-speed steels. Mater Sci Eng A, 2021, 829: 142157
    [19]
    Yang B Z, Xiong X, Liu R T, et al. Effect of yttrium hydride addition on microstructure and properties of powder metallurgy CM2 high speed steel. J Mater Res Technol, 2021, 14: 1275 DOI: 10.1016/j.jmrt.2021.07.056
    [20]
    Benito S, Boes J, Matsuo M, et al. Uncovering process-structure relationships associated to the hot isostatic pressing of the high-speed steel PMHS 3-3-4 through novel microstructural characterization methods. Mater Des, 2021, 208: 109925 DOI: 10.1016/j.matdes.2021.109925
    [21]
    Li H N, Yan L, Zhang H M, et al. Effects of sintering temperature on interface microstructure and element diffusion of WC‒Co‒Ni‒Fe/high-speed steel composites. Mater Lett, 2022, 310: 131449 DOI: 10.1016/j.matlet.2021.131449
    [22]
    Tornberg C, Bengtsson B O. ESH: a tundish metallurgical process improving the properties of PM tool steels. Scand J Metall, 1996, 25(1): 36
    [23]
    Borgstrom H, Nyborg L. Effect of vacuum annealing and nitrogen alloying on gas atomised M4 high speed steel powder. Powder Metall, 2006, 49(1): 48 DOI: 10.1179/174329006X98353
    [24]
    Petrov A K, Tsipunov A G, Palamarchuk A F, et al. Microdefects in particles of atomized high-speed steel powders. Sov Powder Metall Met Ceram, 1976, 15: 250 DOI: 10.1007/BF01178189
    [25]
    Mukhin G G, Pavlov M S. Carbides in atomized powder and powder tungstenless high-speed steel. Met Sci Heat Treat, 1994, 36: 313 DOI: 10.1007/BF01401074
    [26]
    孙海霞, 陈存广, 张振威, 等. 低氧超细粉末制备高性能粉末高速钢. 稀有金属材料与工程, 2019, 48(10): 3246

    Sun H X, Chen C G, Zhang Z W, et al. PM High speed steel with high performance manufactured by super-fine powder with low oxygen content. Rare Met Mater Eng, 2019, 48(10): 3246
    [27]
    Eremeeva Z V, Akhmetov A. Manufacturing of powdered high speed steel by coreduction of tungsten and molybdenum oxides and cobalt oxalate on iron powder. Inorg Mater Appl Res, 2021, 12: 186 DOI: 10.1134/S207511332101007X
    [28]
    Latypova G R, Karpenko N N, Latypov R A, et al. Composition and properties of the powder fabricated from the waste of high-speed R18 tool steel by electroerosion dispersion. Russ Metall, 2020, 2020: 698 DOI: 10.1134/S0036029520060117
    [29]
    Dolgoarshinnykh I R, Mazno O A, Yudakov A A. Production of a high-speed steel powder by vibromilling shavings in ammonia. Powder Metall Met Ceram, 1993, 32: 187 DOI: 10.1007/BF00559745
    [30]
    Reva V P, Moiseenko D V. High-speed steel powder produced from chip wastes ground in the presence of high-molecular compounds. Russ Eng Res, 2013, 33: 79 DOI: 10.3103/S1068798X13020159
    [31]
    Liu Z Y, Loh N H, Khor K A, et al. Mechanical alloying of TiC/M2 high speed steel composite powders and sintering investigation. Mater Sci Eng A, 2001, 311(1-2): 13 DOI: 10.1016/S0921-5093(01)00929-7
    [32]
    Foelzer A, Tornberg C. Advances in processing technology for powder-metallurgical tool steels and high speed steels giving excellent cleanliness and homogeneity. Mater Sci Forum, 2003, 426: 4167
    [33]
    Eisen W B. A review of PM tool and high speed steels. Met Powder Rep, 1997, 52(11): 42
    [34]
    韩凤麟, 马福康, 曹勇家. 粉末冶金技术手册. 北京: 化学工业出版社, 2009

    Han F L, Ma F K, Cao Y J. Technical Manual of Powder Metallurgy. Beijing: Chemical Industry Press, 2009
    [35]
    Liu Y H, Ning Y Q, Yao Z K, et al. Hot deformation behavior of the 1.15C‒4.00Cr‒3.00V‒6.00W‒5.00Mo powder metallurgy high speed steel. Mater Des, 2014, 54: 854
    [36]
    Giménez S, Zubizarreta C, Trabadelo V, et al. Sintering behaviour and microstructure development of T42 powder metallurgy high speed steel under different processing conditions. Mater Sci Eng A, 2008, 480(1-2): 130 DOI: 10.1016/j.msea.2007.06.082
    [37]
    Trabadelo V, Giménez S, Iturriza I. Microstructural characterisation of vacuum sintered T42 powder metallurgy high-speed steel after heat treatments. Mater Sci Eng A, 2009, 499(1-2): 360 DOI: 10.1016/j.msea.2008.08.043
    [38]
    Wright C S. Sintering and microstructure of high vanadium high speed steels. Met Powder Rep, 1999, 54(3): 42
    [39]
    García C, Romero A, Herranz G, et al. Effect of vanadium carbide on dry sliding wear behavior of powder metallurgy AISI M2 high speed steel processed by concentrated solar energy. Mater Charact, 2016, 121: 175 DOI: 10.1016/j.matchar.2016.10.001
    [40]
    Kearns M A, Murray K, Davies P A, et al. Sintering and properties of MIM M2 high speed steel produced by prealloy and master alloy routes. Met Powder Rep, 2016, 71(3): 200 DOI: 10.1016/j.mprp.2016.04.085
    [41]
    Torralba J M, Ruiz-Román J M, Cambronero L E G, et al. P/M high speed steels obtained by metal injection moulding. J Mater Process Technol, 1997, 64(1-3): 387 DOI: 10.1016/S0924-0136(96)02590-3
    [42]
    Liu Z Y, Loh N H, Khor K A, et al. Sintering of injection molded M2 high-speed steel. Mater Lett, 2000, 45(1): 32 DOI: 10.1016/S0167-577X(00)00070-7
    [43]
    Liu Z Y, Loh N H, Khor K A, et al. Microstructure evolution during sintering of injection molded M2 high speed steel. Mater Sci Eng A, 2000, 293(1-2): 46 DOI: 10.1016/S0921-5093(00)01244-2
    [44]
    Várez A, Levenfeld B, Torralba J M, et al. Sintering in different atmospheres of T15 and M2 high speed steels produced by a modified metal injection moulding process. Mater Sci Eng A, 2004, 366(2): 318 DOI: 10.1016/j.msea.2003.08.028
    [45]
    谌启明, 杨靖, 单先裕, 等. 热等静压技术的发展及应用. 稀有金属与硬质合金, 2003(2): 33

    Shen Q M, Yang J, Shan X Y, et al. Development and application of HIP technology. Rare Met Cement Carb, 2003(2): 33
    [46]
    王浩强, 燕青芝, 旷峰华, 等. 制备工艺对粉末高钒高速钢组织和力学性能的影响. 粉末冶金技术, 2010, 28(4): 266

    Wang H Q, Yan Q Z, Kuang F H, et al. Effect of manufacturing routes on microstructure and mechanical properties of high vanadium high speed steel. Powder Metall Technol, 2010, 28(4): 266
    [47]
    Wright S, Ogel B. Supersolidus sintering of high speed steels: Part 1: sintering of molybdenum based alloys. Powder Metall, 1993, 36(3): 213 DOI: 10.1179/pom.1993.36.3.213
    [48]
    Rong W, Andrén H O, Wisell H, et al. The role of alloy composition in the precipitation behaviour of high speed steels. Acta Metall Mater, 1992, 40(7): 1727 DOI: 10.1016/0956-7151(92)90116-V
    [49]
    Asgharzadeh H, Simchi A. Effect of sintering atmosphere and carbon content on the densification and microstructure of laser-sintered M2 high-speed steel powder. Mater Sci Eng A, 2005, 403(1-2): 290 DOI: 10.1016/j.msea.2005.05.017
    [50]
    Mascarenhas J M G, Oliveira M, Wright C S. Effect of vanadium and carbon content on the sinterability of water atomised high speed steel powders. Mater Sci Forum, 2006, 514-516: 529 DOI: 10.4028/www.scientific.net/MSF.514-516.529
    [51]
    Sustarsic B, Kosec L, Dolinsek S, et al. The characteristics of vacuum sintered M3/2 type HSSs with MoS2 addition. J Mater Process Technol, 2003, 143-144: 98 DOI: 10.1016/S0924-0136(03)00328-5
    [52]
    Chang I, Zhao Y Y. Advances in Powder Metallurgy. Cambridge: Woodhead Publishing, 2013
    [53]
    Dobrzański L A, Matula G, Herranz G, et al. Metal injection moulding of HS12-1-5-5 high-speed steel using a PW-HDPE based binder. J Mater Process Technol, 2006, 175(1-3): 173 DOI: 10.1016/j.jmatprotec.2005.04.033
    [54]
    Mesquita R A, Barbosa C A. Spray forming high speed steel-properties and processing. Mater Sci Eng A, 2004, 383(1): 87 DOI: 10.1016/j.msea.2004.02.035
    [55]
    Zhang G Q, Yuan H, Jiao D L, et al. Microstructure evolution and mechanical properties of T15 high speed steel prepared by twin-atomiser spray forming and thermo-mechanical processing. Mater Sci Eng A, 2012, 558: 566 DOI: 10.1016/j.msea.2012.08.050
    [56]
    Yang Y Q, Jiang S, Zhao X. Microstructure evolution of laser direct metal deposition of M2 high speed steel. Mater Sci Forum, 2017, 879: 2198
    [57]
    Wang Y J, Chu S J, Mao B, et al. Microstructure, residual stress, and mechanical property evolution of a spray-formed vanadium-modified high-speed steel processed by post-heat treatment. J Mater Res Technol, 2022, 18: 1521 DOI: 10.1016/j.jmrt.2022.03.053
    [58]
    Shen W J, Yu L P, Liu H X, et al. Diffusion welding of powder metallurgy high speed steel by spark plasma sintering. J Mater Process Technol, 2020, 275: 116383 DOI: 10.1016/j.jmatprotec.2019.116383
    [59]
    Pellizzari M, Fedrizzi A, Zadra M. Spark plasma co-sintering of hot work and high speed steel powders for fabrication of a novel tool steel with composite microstructure. Powder Technol, 2011, 214(3): 292 DOI: 10.1016/j.powtec.2011.08.024
    [60]
    Pellizzari M, Fedrizzi A, Zadra M. Influence of processing parameters and particle size on the properties of hot work and high speed tool steels by spark plasma sintering. Mater Des, 2011, 32(4): 1796 DOI: 10.1016/j.matdes.2010.12.033
    [61]
    Liu Z H, Zhang D Q, Chua C K, et al. Crystal structure analysis of M2 high speed steel parts produced by selective laser melting. Mater Charact, 2013, 84: 72 DOI: 10.1016/j.matchar.2013.07.010
    [62]
    Geenen K, Röttger A, Feld F, et al. Microstructure, mechanical, and tribological properties of M3:2 high-speed steel processed by selective laser melting, hot-isostatic pressing, and casting. Addit Manuf, 2019, 28: 585
    [63]
    Naranjo J A, Berges C, Gallego A, et al. A novel printable high-speed steel filament: Towards the solution for wear-resistant customized tools by AM alternative. J Mater Res Technol, 2021, 11: 1534 DOI: 10.1016/j.jmrt.2021.02.001
    [64]
    Saewe J, Carstensen N, Kürnsteiner P, et al. Influence of increased carbon content on the processability of high-speed steel HS6-5-3-8 by laser powder bed fusion. Addit Manuf, 2021, 46: 102125
    [65]
    Li Y, Wang Y, Niu J Z, et al. Microstructure and mechanical properties of M2 high speed steel produced by electron beam melting. Mater Sci Eng A, 2023, 862: 144327 DOI: 10.1016/j.msea.2022.144327
    [66]
    贾成厂, 吴立志. 粉末冶金高速钢. 金属世界, 2012, 2012(2): 5

    Jia C C, Wu L Z. Powder metallurgy high speed steel. Met World, 2012, 2012(2): 5
  • Related Articles

    [1]HE Xuemin, WANG Guishan, LI Yinghong, SHI Meijuan. Pitting corrosion behavior of pure copper components in EHV/UHV DC transmission environment[J]. Powder Metallurgy Technology, 2024, 42(1): 91-96. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110003
    [2]Study on microstructure and high-temperature corrosion resistance to melt-salts of LDED High-Cr Ni-base alloy with low melting point[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024100012
    [3]NI Xiaoqing, ZHANG Liang, WU Wenheng, KONG Decheng, WEN Ying, WANG Li, DONG Chaofang. Effect of electrochemical polishing on surface quality and corrosion resistance of Ti6Al4V crowns fabricated by selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(6): 528-535, 542. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110011
    [4]GUO Yang, HU Li-ming. Effect of graphene oxide on the corrosion resistance and electromagnetic propertiese of FeSiAl alloy powders[J]. Powder Metallurgy Technology, 2021, 39(6): 520-525. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030029
    [5]MIAO Zhen-wang, ZHU Fu-wen, LIU Qi. Study on microstructure and corrosion resistance of CoCrFeNiCuTix high-entropy alloy[J]. Powder Metallurgy Technology, 2020, 38(1): 10-17. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.002
    [6]Corrosion Resistance of Ti(C,N)-based Cermet for Surgical Cutting Tools[J]. Powder Metallurgy Technology, 2002, 20(2): 82-85. DOI: 10.3321/j.issn:1001-3784.2002.02.005
    [7]Ye Minghui, Zhao Zhongmin, Du Xinkang, Xin Wentong, Wang Jianjiang. INVESTIGATION ON CORROSION-RESISTANCE OF DOUBLE LINED CERAMIC COMPOSITE PIPES PRODUCED BY GRAVITATIONAL SEPARATION SHS PROCESS[J]. Powder Metallurgy Technology, 2000, 18(2): 106-110.
    [8]Duan Huiping, Wei Yanping, Yin Sheng, Lai Heyi. Investigation on corosion resistance of alloy produced by SHS centrifugal process[J]. Powder Metallurgy Technology, 1998, 16(3): 178-182.
    [9]Huang Jianzhong, Huang Boyun, Lu: Haibo. CHARACTERISTICS AND CORROSION RESISTANT PROPERTY OF HIGH TUNGSTEN HEAVY ALLOY SINTERED AT LOW TEMPERATURE[J]. Powder Metallurgy Technology, 1996, 14(1): 37-43.
    [10]Song Huan, Zhang Song, Zhang Shusheng, Sui Quanming. STUDY ON FLAME SPRAY WELDING BY USING CAST TUNGSTEN CARBIDE ALLOY POWDER PREFORMED COMPACT AND WEAR RESISTANCE[J]. Powder Metallurgy Technology, 1995, 13(4): 259-264.
  • Cited by

    Periodical cited type(1)

    1. 刘杰,李正刚,杨兵. AlCrNbSiTi高熵合金涂层高温水蒸气腐蚀研究. 湖南电力. 2024(02): 29-34 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (237) PDF downloads (76) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return