AdvancedSearch
HE Haoran, LIU Qi, BO Xinwei, WANG Xiaoyu, YAO Zhiyuan, HAN Xiaoyu, Wang Yujin. Forming regularity of Mo–Re alloy powders by cold isostatic pressing[J]. Powder Metallurgy Technology, 2025, 43(1): 102-108. DOI: 10.19591/j.cnki.cn11-1974/tf.2023060011
Citation: HE Haoran, LIU Qi, BO Xinwei, WANG Xiaoyu, YAO Zhiyuan, HAN Xiaoyu, Wang Yujin. Forming regularity of Mo–Re alloy powders by cold isostatic pressing[J]. Powder Metallurgy Technology, 2025, 43(1): 102-108. DOI: 10.19591/j.cnki.cn11-1974/tf.2023060011

Forming regularity of Mo–Re alloy powders by cold isostatic pressing

More Information
  • Corresponding author:

    LIU Qi, E-mail: 1607439632@qq.com

  • Received Date: September 11, 2023
  • Accepted Date: September 11, 2023
  • Available Online: September 11, 2023
  • The cold isostatic pressing of Mo–47.5%Re alloy powders (mass fraction) mixed by ball milling and plasma spheroidization was compared and analyzed. The compression parameters were fitted and the relationship between pressing pressure and billet density was analyzed by Huang Peiyun’s double logarithmic pressing theory. The results show that the axial shrinkage of the compacts mixed by both ball milling and plasma spheroidization is greater than that of the radial shrinkage after cold isostatic pressing in the mold with large length/diameter ratio. The billets pressed by plasma spheroidization alloy powders are complete and uncracked, the density changes less along the axial direction, and the core density is slightly lower than that at both ends. The billets pressed by ball milling alloy powders are broken like bamboo joint, the density varies greatly along the axial direction, and the core density is significantly lower than that at both ends. The harding exponent of plasma spheroidization alloy powders is slightly higher than that of ball milling alloy powders, while the pressing modulus (M) is lower than that of ball milling alloy powders, which means the hardening tendency of plasma spheroidization alloy powders is greater.

  • [1]
    刘仁智, 安耿, 杨秦莉, 等. 钼−铼−镧合金微观组织及力学性能研究. 粉末冶金技术, 2018, 36(6): 429

    Liu R Z, An G, Yang Q L, et al. Microstructures and mechanical properties of Mo−Re−La alloy. Powder Metall Technol, 2018, 36(6): 429
    [2]
    曾毅, 孙院军, 安耿, 等. 核反应堆用钼铼合金结构材料研究进展. 粉末冶金技术, 2023, 41(4): 307

    Zeng Y, Sun Y J, An G, et al. Research progress of Mo−Re alloy structural materials used for nuclear reactors. Powder Metall Technol, 2023, 41(4): 307
    [3]
    Hiraoka Y, Ogusu T, Yoshizawa N. Decrease of yield strength in molybdenum by adding small amounts of Group VIII elements. J Alloys Compd, 2004, 381(1-2): 192 DOI: 10.1016/j.jallcom.2004.03.112
    [4]
    Asimow P D, Sun D Y, Ahrens T J. Shock compression of preheated molybdenum to 300 GPa. Phys Earth Planet Inter, 2008, 174(1-4): 302
    [5]
    陈畅, 汪明朴, 谭望, 等. 粉末冶金方法制备钼铼合金的研究. 材料导报, 2008, 22(5): 74 DOI: 10.3321/j.issn:1005-023X.2008.05.018

    Chen C, Wang M P, Tan W, et al. Study on preparation of molybdenum-rhenium alloys of powder metallurgy methods. Mater Rev, 2008, 22(5): 74 DOI: 10.3321/j.issn:1005-023X.2008.05.018
    [6]
    黄洪涛, 王卫军, 钟武烨, 等. 钼铼合金在空间核电源中的应用性能研究进展. 原子能科学技术, 2020, 54(3): 505 DOI: 10.7538/yzk.2019.youxian.0251

    Huang H T, Wang W J, Zhong W Y, et al. Research progress on application of Mo–Re alloy in space nuclear power. Atom Energy Sci Technol, 2020, 54(3): 505 DOI: 10.7538/yzk.2019.youxian.0251
    [7]
    Schneibel J H, Felderman E J, Ohriner E K. Mechanical properties of ternary molybdenum-rhenium alloys at room temperature and 1700 K. Scr Mater, 2008, 59(2): 131 DOI: 10.1016/j.scriptamat.2008.02.057
    [8]
    郑欣, 白润, 王东辉, 等. 航天航空用难熔金属材料的研究进展. 稀有金属材料与工程, 2011, 40(10): 1871

    Zheng X, Bai R, Wang D H, et al. Research development of refractory metal materials used in the field of aerospace. Rare Met Mater Eng, 2011, 40(10): 1871
    [9]
    杨毅超, 林小辉, 李延超, 等. ODS强化钼铼合金的再结晶温度研究. 中国钼业, 2020, 44(3): 46

    Yang Y C, Lin X H, Li Y C, et al. Recrystallization temperature of oxide dispersion strengthened Mo–Re alloy. China Molybd Ind, 2020, 44(3): 46
    [10]
    谭拴斌, 郭让民, 杨升红, 等. 钼铼合金的结构和性能. 稀有金属, 2003, 27(6): 788 DOI: 10.3969/j.issn.0258-7076.2003.06.028

    Tan S B, Guo R M, Yang S H, et al. Structure and properties of molybdenum-rhenium alloys. China J Rare Met, 2003, 27(6): 788 DOI: 10.3969/j.issn.0258-7076.2003.06.028
    [11]
    陈畅, 汪明朴, 郭明星, 等. 粉末冶金法制备Mo–43wt%Re合金退火行为的研究. 材料热处理学报, 2007, 28(6): 54 DOI: 10.3969/j.issn.1009-6264.2007.06.013

    Chen C, Wang M P, Guo M X, et al. Study on annealing behaviors of Mo–43wt%Re alloy prepared by powder metallurgy. Trans Mater Heat Treat, 2007, 28(6): 54 DOI: 10.3969/j.issn.1009-6264.2007.06.013
    [12]
    张广庆, 徐楠, 王瑗. 粉末冶金压制成形理论与工艺综述. 热加工工艺, 2017, 46(19): 9

    Zhang G Q, Xu N, Wang Y. Review on theory and technology of powder metallurgy pressing forming. Hot Work Technol, 2017, 46(19): 9
    [13]
    阮建明, 黄培云. 粉末冶金原理. 北京: 机械工业出版社, 2012

    Ruan J M, Huang P Y. Theory of Power Metallurgy. Beijing: China Machine Press, 2012
    [14]
    何浩然. 粉末冶金钼棒制备工艺及其表面硅化改性研究[学位论文]. 重庆: 重庆理工大学, 2020

    He H R. Study on Preparation Technology of Powder Metallurgy Molybdenum Rod and its Surface Silicification Modification [Dissertation]. Chongqing: Chongqing University of Technology, 2020
    [15]
    张永刚, 韩雅芳, 陈国良, 等. 金属间化合物结构材料. 北京: 国防工业出版社, 2001

    Zhang Y G, Han Y F, Chen G L, et al. Structural Intermetallics. Beijing: National Defense Industry Press, 2001
    [16]
    张桃梅, 资旭辉, 程小凡, 等. 3D打印用球形钨、钽粉末的等离子球化工艺研究. 中南大学学报(自然科学版), 2022, 53(7): 2439

    Zhang T M, Zi X H, Chen X F, et al. Plasma spheroidization of tungsten/tantalum powders for 3D printing. J Cent South Univ Sci Technol, 2022, 53(7): 2439
    [17]
    谢辉, 杨刘晓, 赵宝华, 等. Mo粉末冷等静压成形规律. 铸造技术, 2007, 28(40): 480

    Xie H, Yang L X, Zhao B H, et al. Formation mechanism of Mo powders under isostatic cool pressing. Foundry Technol, 2007, 28(40): 480
    [18]
    张炜, 萧伟健, 袁传牛, 等. 基于三维离散元模型粉末压制中力链对阻塞行为的影响机制. 粉末冶金技术, 2024, 42(4): 403

    Zhang W, Xiao W J, Yuan C N, et al. Influence mechanism of force chain on jamming behavior in powder compaction based on 3D discrete element model. Powder Metall Technol, 2024, 42(4): 403
  • Related Articles

    [1]CHEN Bing-wei, YANG Xue-feng, ZHU Zhen-dong, LI Zheng-xin. Surface morphology characterization of diamond etched by CeO2[J]. Powder Metallurgy Technology, 2022, 40(4): 318-324. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090018
    [2]LIN Bing-tao, HE Jun, LIU Zhong-wei, WANG Cheng-yang, LI Ming, SUN Xiao-xia, ZHOU Shu-qiu. Fracture morphology and microstructure analysis of Mo–La nozzles for solid rocket motor[J]. Powder Metallurgy Technology, 2022, 40(1): 80-85. DOI: 10.19591/j.cnki.cn11-1974/tf.2021070003
    [3]YANG Wen-tao, XUE Bing, DAI Yong-fu, PU Chuan-jin, XIAO Ding-jun. Effect of milling time on the particle size distribution and morphology of tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(5): 423-428. DOI: 10.19591/j.cnki.cn11-1974/tf.2020020010
    [4]SI Jia-jia, SU Xiao-lei. Preparation of ultrafine spherical nickel powders[J]. Powder Metallurgy Technology, 2021, 39(2): 177-183. DOI: 10.19591/j.cnki.cn11-1974/tf.2019090003
    [5]SUN Tian-hao, HAO Su-ju, JIANG Wu-feng, ZHANG Yu-zhu. Preparation and morphology analysis of nano-sized iron oxide[J]. Powder Metallurgy Technology, 2021, 39(1): 76-80. DOI: 10.19591/j.cnki.cn11-1974/tf.2019080008
    [6]ZHANG Bao-hong, TANG Liang-liang. Study on the erosion morphology of W-Ni-Sr electrode[J]. Powder Metallurgy Technology, 2020, 38(4): 289-294. DOI: 10.19591/j.cnki.cn11-1974/tf.2019050007
    [7]LUO Xiao-qiang, HAN Yong-jun, FENG Yun-xiao, YU Hao, YU Chun-bo, ZHAO Li-heng. Effect of bucket temperature on grain morphology of semi-solid melt A356 by micro fused-casting[J]. Powder Metallurgy Technology, 2019, 37(3): 170-174. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.03.002
    [8]Hydrothermal synthesis of micro-copper powders with special morphology[J]. Powder Metallurgy Technology, 2010, 28(3): 200-203.
    [9]Du Huiling, Wang Jianzhong, Chen Danfeng, Cang Daqiang. Effects of pulsed electromagnetic field on morphology of cobalt oxalate powders[J]. Powder Metallurgy Technology, 2010, 28(2): 96-100.
    [10]Xu Tianhan, Wang Danghui. Effect of inner diameter of delivery tube end of atomizer on morphology and size distribution of free-lead solder powder[J]. Powder Metallurgy Technology, 2009, 27(3): 197-202.
  • Cited by

    Periodical cited type(5)

    1. 王哲昊,吕绪明. 等离子喷涂技术在工程陶瓷涂层制备中的应用现状及展望. 材料导报. 2024(11): 52-61 .
    2. 陈开旺,张鹏林,李树旺,牛显明,胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能. 材料研究学报. 2023(01): 39-46 .
    3. 张一帆,王曲,王刚,刘鹏程,张琪,司瑶晨. 黏结剂种类对铝酸镧涂层材料性能的影响. 耐火材料. 2022(02): 123-126 .
    4. 张志辉,李明. 316L钢表面超音速火焰喷涂Fe基粉末涂层显微结构及摩擦性能分析. 粉末冶金技术. 2022(04): 351-355+361 . 本站查看
    5. 蔡浩,龚关,梁雅琪,仇秀梅,刘可. 莫来石在醇基铸造涂料中的试验研究. 中国新技术新产品. 2022(21): 26-28+145 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (636) PDF downloads (28) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return