AdvancedSearch
Simultaneously enhancing the mechanical and electrical properties in CNTs/Cu composites via chemical vapor deposition introducing ex-situ interfacial WC[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024120002
Citation: Simultaneously enhancing the mechanical and electrical properties in CNTs/Cu composites via chemical vapor deposition introducing ex-situ interfacial WC[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024120002

Simultaneously enhancing the mechanical and electrical properties in CNTs/Cu composites via chemical vapor deposition introducing ex-situ interfacial WC

More Information
  • Available Online: January 22, 2025
  • In this work, nano-scale WC interface phase was pr-introduced on the surface of CNTs (WC@CNTs) by chemical vapor deposition using CH4 as C source and ammonium metatungstate served as the W source. Subsequently, the WC@CNTs reinforced copper matrix composites (WC@CNTs/Cu) were prepared by spark plasma sintering (SPS). The effect of WC on the mechanical and electrical properties of the composites was studied in detail. The formed “CNTs-WC-Cu” interface not only guarantees accurate stress/strain transmission, but also enhances the interfacial conductivity by reducing interfacial scattering, which contributes to the considerable mechanical and electrical properties of WC@CNTs/Cu over CNTs/Cu. It was found that the interface of “CNTs-WC-Cu” formed by WC can not only effectively transfer the stress, but also improve the interfacial conductivity by reducing the interfacial inelastic scattering, making WC@CNTs/Cu composites exhibit excellent mechanical and electrical properties. When the addition of CNTs was 1% vol%, the ultimate tensile strength of WC@CNTs/Cu composite reached 302 MPa, which was 34.2% and 41.1% higher than that of CNTs/Cu composite and pure Cu, respectively, while maintaining an excellent fracture elongation of 27%. Additionally, the WC@CNTs/Cu composite exhibits an electrical conductivity of 94.4 %IACS, which is comparable to that of pure Cu prepared by the same method.
  • Related Articles

    [1]MU Jianghan, LIU Shumei, LI Dajie, YANG Hangzhou, ZHOU Haitao. Deformation of Fe2Ni prepared by metal powder injection molding[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070001;https://pmt.ustb.edu.cn
    [2]YAO Jing, ZHANG Jiantao, LI Xingyi, LIU Zhongqiang, LIU Xiao, XIAO Zhiyu. Effect of ultrasonic surface rolling process on microstructure and properties of hydride sintered pure titanium[J]. Powder Metallurgy Technology, 2024, 42(6): 547-555. DOI: 10.19591/j.cnki.cn11-1974/tf.2022120009
    [3]LIU Xiao, LI Xingyi, XIAO Zhiyu. Microstructure evolution and densification behavior of iron-based powder metallurgy materials by surface rolling densification technology[J]. Powder Metallurgy Technology, 2024, 42(5): 456-463. DOI: 10.19591/j.cnki.cn11-1974/tf.2024060021
    [4]SHI Zhan, MA Fengcang, TAN Zhanqiu, FAN Genlian, LI Zhiqiang. Research progress on the interface and grain control in carbon nanotube reinforced aluminum matrix composites[J]. Powder Metallurgy Technology, 2024, 42(1): 14-28. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090008
    [5]HOU Yanan, YANG Kunming, LIU Yue, FAN Tongxiang. Effect of interfacial thermal mismatch on mechanical properties of metal matrix composites[J]. Powder Metallurgy Technology, 2023, 41(6): 490-499, 507. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030033
    [6]ZHANG Qiang, ZHENG Liang, XU Wen-yong, LI Zhou, ZHANG Guo-qing, XIE Jian-xin. Research progress on argon atomized nickel-based powder metallurgy superalloys and powder characteristics[J]. Powder Metallurgy Technology, 2022, 40(5): 387-400. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050016
    [7]HOU Wei-qiang, MENG Jie, LIANG Jing-jing, QIU Ke-qiang, REN Ying-lei, LI Jin-guo, WANG Dao-hong, ZHANG Peng, ZHANG Hong-wei, TANG Gang-quan. Preparation technology and research progress of superalloy powders used for additive manufacturing[J]. Powder Metallurgy Technology, 2022, 40(2): 131-138. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030038
    [8]LIU Fu, JIANG Xiao-jing, ZHENG Pan, SHANG Jian. Research on microstructure and properties of Fe-Mo-(Ni/Cu)-graphite composite prepared by powder metallurgy technology[J]. Powder Metallurgy Technology, 2018, 36(1): 36-42. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.01.007
    [9]Shen Xiaoping, Xu Guisheng. Defect analysis of powder metallurgy compact[J]. Powder Metallurgy Technology, 2012, 30(4): 279-287. DOI: 10.3969/j.issn.1001-3784.2012.04.007
    [10]Han Shengli, Song Yueqing, Cui Shun. The investigation on flaws of Mo-Cu alloys[J]. Powder Metallurgy Technology, 2009, 27(2): 99-103.
  • Cited by

    Periodical cited type(4)

    1. 苏旭文,何志,闫树欣,董龙龙,孙国栋. 纳米ZrC粉末对90W-7Ni-3Fe合金组织及性能影响. 粉末冶金技术. 2025(01): 86-93 . 本站查看
    2. 刘柏雄,魏民国,赵文敏. 钨粉制备及其对钨合金性能影响的研究进展. 江西冶金. 2024(01): 1-10 .
    3. 陈绍勤,胡玲,雷天涯,王蓉,舒建成,陈梦君. 机械活化强化锌焙砂中锌的浸出. 化工进展. 2023(03): 1649-1658 .
    4. 谢勇才. 球磨工艺对细颗粒钨粉质量及硬质合金晶粒夹粗的影响. 稀有金属与硬质合金. 2023(05): 90-95 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (44) PDF downloads (8) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return