AdvancedSearch
Research on Pressing and Sintering Process of A100 Steel in Powder Metallurgy[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2025010002
Citation: Research on Pressing and Sintering Process of A100 Steel in Powder Metallurgy[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2025010002

Research on Pressing and Sintering Process of A100 Steel in Powder Metallurgy

More Information
  • Available Online: March 04, 2025
  • A variable-temperature supersolidus liquid phase sintering (SLPS) process was employed to fabricate high-density A100 high-alloy steel through vacuum pressureless sintering, with systematic investigation of the sintering densification mechanisms. The effects of powder particle size, compaction parameters, and sintering conditions on the densification, microstructure, and mechanical properties of powder metallurgy A100 steel were analyzed using optical microscopy, scanning electron microscopy (SEM), tensile testing, and density/hardness measurements. The results indicated that the sintering densification rate increased with decreasing particle size, and the variable-temperature SLPS process significantly enhanced alloy densification. By utilizing powders with a particle size range of 7.3–20.8 μm, mixed with 0.7 wt.% styrene-butadiene rubber (SBR) binder, granulated through 40-mesh sieving, and uniaxially pressed, the specimens achieved a density of 99.4 % and tensile strength exceeding 1700 MPa after sintering at 1440 ℃ for 10 min followed by 1430 ℃ for 72 min. During sintering, the variable-temperature profile promoted rapid densification via viscous flow and particle rearrangement at the high-temperature stage, while the dissolution-reprecipitation mechanism at the low-temperature stage optimized particle morphology adaptation, collectively improving densification efficiency.
  • Related Articles

    [1]MU Jianghan, LIU Shumei, LI Dajie, YANG Hangzhou, ZHOU Haitao. Deformation of Fe2Ni prepared by metal powder injection molding[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070001;https://pmt.ustb.edu.cn
    [2]YAO Jing, ZHANG Jiantao, LI Xingyi, LIU Zhongqiang, LIU Xiao, XIAO Zhiyu. Effect of ultrasonic surface rolling process on microstructure and properties of hydride sintered pure titanium[J]. Powder Metallurgy Technology, 2024, 42(6): 547-555. DOI: 10.19591/j.cnki.cn11-1974/tf.2022120009
    [3]LIU Xiao, LI Xingyi, XIAO Zhiyu. Microstructure evolution and densification behavior of iron-based powder metallurgy materials by surface rolling densification technology[J]. Powder Metallurgy Technology, 2024, 42(5): 456-463. DOI: 10.19591/j.cnki.cn11-1974/tf.2024060021
    [4]SHI Zhan, MA Fengcang, TAN Zhanqiu, FAN Genlian, LI Zhiqiang. Research progress on the interface and grain control in carbon nanotube reinforced aluminum matrix composites[J]. Powder Metallurgy Technology, 2024, 42(1): 14-28. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090008
    [5]HOU Yanan, YANG Kunming, LIU Yue, FAN Tongxiang. Effect of interfacial thermal mismatch on mechanical properties of metal matrix composites[J]. Powder Metallurgy Technology, 2023, 41(6): 490-499, 507. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030033
    [6]ZHANG Qiang, ZHENG Liang, XU Wen-yong, LI Zhou, ZHANG Guo-qing, XIE Jian-xin. Research progress on argon atomized nickel-based powder metallurgy superalloys and powder characteristics[J]. Powder Metallurgy Technology, 2022, 40(5): 387-400. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050016
    [7]HOU Wei-qiang, MENG Jie, LIANG Jing-jing, QIU Ke-qiang, REN Ying-lei, LI Jin-guo, WANG Dao-hong, ZHANG Peng, ZHANG Hong-wei, TANG Gang-quan. Preparation technology and research progress of superalloy powders used for additive manufacturing[J]. Powder Metallurgy Technology, 2022, 40(2): 131-138. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030038
    [8]LIU Fu, JIANG Xiao-jing, ZHENG Pan, SHANG Jian. Research on microstructure and properties of Fe-Mo-(Ni/Cu)-graphite composite prepared by powder metallurgy technology[J]. Powder Metallurgy Technology, 2018, 36(1): 36-42. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.01.007
    [9]Shen Xiaoping, Xu Guisheng. Defect analysis of powder metallurgy compact[J]. Powder Metallurgy Technology, 2012, 30(4): 279-287. DOI: 10.3969/j.issn.1001-3784.2012.04.007
    [10]Han Shengli, Song Yueqing, Cui Shun. The investigation on flaws of Mo-Cu alloys[J]. Powder Metallurgy Technology, 2009, 27(2): 99-103.
  • Cited by

    Periodical cited type(4)

    1. 苏旭文,何志,闫树欣,董龙龙,孙国栋. 纳米ZrC粉末对90W-7Ni-3Fe合金组织及性能影响. 粉末冶金技术. 2025(01): 86-93 . 本站查看
    2. 刘柏雄,魏民国,赵文敏. 钨粉制备及其对钨合金性能影响的研究进展. 江西冶金. 2024(01): 1-10 .
    3. 陈绍勤,胡玲,雷天涯,王蓉,舒建成,陈梦君. 机械活化强化锌焙砂中锌的浸出. 化工进展. 2023(03): 1649-1658 .
    4. 谢勇才. 球磨工艺对细颗粒钨粉质量及硬质合金晶粒夹粗的影响. 稀有金属与硬质合金. 2023(05): 90-95 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (19) PDF downloads (6) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return