AdvancedSearch
Zhao Kunyu, Zhu Xinkun, Su Yunsheng, Zhang Jiaqi. A study on Self-Propagating High Temperature Synthesis of TiB2[J]. Powder Metallurgy Technology, 1997, 15(1): 26-28.
Citation: Zhao Kunyu, Zhu Xinkun, Su Yunsheng, Zhang Jiaqi. A study on Self-Propagating High Temperature Synthesis of TiB2[J]. Powder Metallurgy Technology, 1997, 15(1): 26-28.

A study on Self-Propagating High Temperature Synthesis of TiB2

More Information
  • Received Date: December 31, 1995
  • Available Online: July 20, 2021
  • TiB2 was produced by self-propagating High temperature synthesis(SHS) when raw material was powder(Ti,B) and the ignition equipment is a electric welding machine. The products were analysed by XRD, DTA and SEM techniques. The results were that TiB2 was produced by self propagating high temperature synthesis when the process temperature was 457 0℃~856 1℃.
  • Related Articles

    [1]LIU Guang-xu, WANG Xiao-feng, YANG Jie, ZOU Jin-wen. Effect of heat treatment on microstructure evolution and mechanical properties of P/M Ni-based superalloy at diffusion bonding interface[J]. Powder Metallurgy Technology, 2022, 40(3): 218-225. DOI: 10.19591/j.cnki.cn11–1974/tf.2021040006
    [2]XIAO Ping-an, ZHAO Ji-kang, GU Jing-hong, LÜ Rong, GU Si-min, CHEN Yu-xiang, CHEN Huan. Fabrication technology upgrade of TiC-based high manganese steel bonded cemented carbide[J]. Powder Metallurgy Technology, 2021, 39(6): 545-548. DOI: 10.19591/j.cnki.cn11-1974/tf.2020090010
    [3]YANG Jie, LIU Guang-xu, ZHANG Jing, WANG Wen-ying, WANG Xiao-feng, ZOU Jin-wen. Microstructure and failure mechanism of FGH96 solid-state diffusion bonding interface[J]. Powder Metallurgy Technology, 2021, 39(4): 311-318. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040005
    [4]Su Yixiang, Lei Yu, Xu Zhuang, Zhao Xiaoli, Guo Haifeng. Study on microstructure and properties of containing tellurium nickel-based alloy powder coating by non-vacuum fusion[J]. Powder Metallurgy Technology, 2013, 31(5): 323-327. DOI: 10.3969/j.issn.1001-3784.2013.05.001
    [5]Fan Anping, Xiao Ping'an, Li Chenkun, Xuan Cuihua, Qu Xuanhui. Research situation of TiC-based steel bonded carbide[J]. Powder Metallurgy Technology, 2013, 31(4): 298-303. DOI: 10.3969/j.issn.1001-3784.2013.04.011
    [6]Gong Wei, Li Hua, Zhu Yong. Effect of vanadium content on the microstructure and mechanical properties of (Ti,V)C35CrMo steel bonded carbide[J]. Powder Metallurgy Technology, 2009, 27(5): 336-340.
    [7]Liu Junbo, Wang Limei, Liu Junhai, Huang Jihua. Influence of bonding phase on microstructure of steel bonded Himet synthesized in situ[J]. Powder Metallurgy Technology, 2007, 25(4): 266-270.
    [8]Xiong Yongjun, Li Xibin, Liu Rutie, Zhao Fuan. Influences of high energy ball milling on microstructure and properties of a new steel bonded titanium carbide[J]. Powder Metallurgy Technology, 2006, 24(3): 187-191. DOI: 10.3321/j.issn:1001-3784.2006.03.006
    [9]Liu Junhai, Huang Jihua, Song Guixiang, Zhang Jiangang. A study on in situ reactive synthesis of TiC/heat resistant steel-steel bonded carbides[J]. Powder Metallurgy Technology, 2005, 23(3): 199-203. DOI: 10.3321/j.issn:1001-3784.2005.03.009
    [10]Wu Qiang, Hu Zhenhua, Xiao Jianzhong, Cui Kun. TEM RESEARCH ON MICROSTRUCTURES OF TiC-50Nb STEEL-BONDED CEMENTED CARBIDE[J]. Powder Metallurgy Technology, 1993, 11(3): 202-207.

Catalog

    Article Metrics

    Article views (241) PDF downloads (7) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return