AdvancedSearch
LIU Hao, SHI Yongliang, DANG Haiqing. Preparation and performance of bionic bone implantation titanium alloy scaffolds by extrusion molding 3D printing[J]. Powder Metallurgy Technology, 2024, 42(4): 367-373. DOI: 10.19591/j.cnki.cn11-1974/tf.2023090013
Citation: LIU Hao, SHI Yongliang, DANG Haiqing. Preparation and performance of bionic bone implantation titanium alloy scaffolds by extrusion molding 3D printing[J]. Powder Metallurgy Technology, 2024, 42(4): 367-373. DOI: 10.19591/j.cnki.cn11-1974/tf.2023090013

Preparation and performance of bionic bone implantation titanium alloy scaffolds by extrusion molding 3D printing

More Information
  • Corresponding author:

    SHI Yongliang, E-mail: shiyongliang100@163.com

  • Received Date: September 22, 2023
  • Available Online: November 05, 2023
  • The preparation, microstructure, and mechanical properties of the Ti6Al4V titanium alloy scaffolds by extrusion molding 3D printing were systematically investigated by universal testing machine and scanning electron microscope in this paper. The preparation of titanium alloy scaffolds using polyvinyl alcohol (PVA) hydrogel was introduced, the influences of slurry PVA content, degreasing temperature, and sintering temperature on the preparation process were investigated, and the relationship between the porosity and mechanical properties of titanium alloy scaffolds was analyzed. The results show that, the PVA hydrogels can be used to prepare the titanium alloy scaffolds to obtain the porous structures with uniform distribution and high interconnectivity. The optimal preparation process is obtained, when the slurry PVA mass fraction is 15%, and the degreasing and sintering temperatures are 360 and 1300 ℃. The titanium alloy scaffolds with the porosity of 59.8% exhibit the excellent mechanical properties matching human bones to avoid the stress-masking effect.

  • [1]
    焦晨, 晁龙, 朱磊, 等. 面向骨科植入物的仿生多孔结构设计与制造方法. 中国机械工程, 2022, 23: 2844

    Jiao C, Yao L, Zhu L, et al. Design and manufacture method of bionic porous structures for orthopedic implants. China Mech Eng, 2022, 23: 2844
    [2]
    Chen Y H, Han P P, Vandi L J, et al. A biocompatible thermoset polymer binder for direct ink writing of porous titanium scaffolds for bone tissue engineering. Mater Sci Eng C, 2019, 95: 160 DOI: 10.1016/j.msec.2018.10.033
    [3]
    Srivas P K, Kapat K, Dadhich P, et al. Osseointegration assessment of extrusion printed Ti6Al4V scaffold towards accelerated skeletal defect healing via tissue in-growth. Bioprinting, 2017, 6: 8 DOI: 10.1016/j.bprint.2017.04.002
    [4]
    梁浩文, 王月, 陈小腾, 等. 3D打印生物陶瓷人工骨支架的研究进展. 粉末冶金技术, 2022, 40(2): 100

    Liang H W, Wang Y, Chen X T, et al. Progress of 3D printing bioceramic on artificial bone scaffolds. Powder Metall Technol, 2022, 40(2): 100
    [5]
    李述军, 侯文韬, 郝玉琳, 等. 3D打印医用钛合金多孔材料力学性能研究进展. 金属学报, 2023, 59(4): 478

    Li S J, Hou W T, Hao Y L, et al. Research progress on the mechanical properties of the biomedical titanium alloy porous structures fabricated by 3D printing technique. Acta Metall Sin, 2023, 59(4): 478
    [6]
    王子航. 基于仿生设计的3D打印Ti−6Al−4V多孔结构骨植入物的制备及骨整合性能研究[学位论文]. 吉林: 吉林大学, 2023

    Wang Z H. Preparation and Bone Integration Performance of 3D Printed Ti−6Al−4V Porous Bone Implant Based on Bionic Design [Dissertation]. Jilin: Jilin University, 2023
    [7]
    刘畅, 王辰宇, 刘贺, 等. 3D打印Ti6Al4V钛合金支架的力学性能及生物兼容性. 中国有色金属学报, 2018, 28(4): 758

    Liu C, Wang C Y, Liu H, et al. Mechanical properties and biocompatibility of 3D printed Ti6Al4V titanium alloy scaffolds. Chin J Nonferrous Met, 2018, 28(4): 758
    [8]
    Wieding J, Lindner T, Bergschmidt P, et al. Biomechanical stability of novel mechanically adapted open-porous titanium scaffolds in metatarsal bone defects of sheep. Biomaterials, 2015, 46: 35 DOI: 10.1016/j.biomaterials.2014.12.010
    [9]
    Fukuda A, Takemoto M, Saito T, et al. Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomater, 2011, 7(5): 2327 DOI: 10.1016/j.actbio.2011.01.037
    [10]
    Nune K C, Misra R D K, Gaytan S M, et al. Interplay between cellular activity and three-dimensional scaffold-cell constructs with different foam structure processed by electron beam melting. J Biomed Mater Res Part A, 2014, 103(5): 1677
    [11]
    崔振铎, 朱家民, 姜辉, 等. Ti及钛合金表面改性在生物医用领域的研究进展. 金属学报, 2022, 58(7): 837

    Cui Z D, Zhu J M, Jiang H, et al. Research progress of the surface modification of titanium and titanium alloys for biomedical application. Acta Metall Sin, 2022, 58(7): 837
    [12]
    刘敏, 郭瑜, 甄珍, 等. 电子束选区熔化技术制备Ti−6Al−4V合金的研究进展. 粉末冶金工业, 2022, 32(2): 84

    Liu M, Guo Y, Zhen Z, et al. Research progress on Ti−6Al−4V alloy prepared by selective electron beam melting. Powder Metall Ind, 2022, 32(2): 84
    [13]
    冯恩昊, 王小齐, 韩潇, 等. 激光选区熔化Ti6Al4V合金的工艺参数优化. 粉末冶金技术, 2022, 40(6): 555

    Feng E H, Wang X Q, Han X, et al. Process parameters optimization of Ti6Al4V fabricated by selective laser melting. Powder Metall Technol, 2022, 40(6): 555
    [14]
    王建忠, 敖庆波, 马军, 等. 钛合金纤维多孔材料制备及压缩性能. 粉末冶金技术, 2023, 41(2): 125

    Wang J Z, Ao Q B, Ma J, et al. Preparation and compressive properties of Ti alloy fiber porous materials. Powder Metall Technol, 2023, 41(2): 125
    [15]
    Elsayed H, Rebesan P, Giacomello G, et al. Direct ink writing of porous titanium (Ti6Al4V) lattice structures. Mater Sci Eng C, 2019, 103: 109794 DOI: 10.1016/j.msec.2019.109794
    [16]
    孙海波, 徐淑波, 张森, 等. SLM成形不同孔隙结构骨支架的仿真与实验研究. 精密成形工程, 2022, 14(2): 123

    Sun H B, Xu S B, Zhang S, et al. Simulation and experimental study of bone scaffolds with different pore structures formed by SLM. J Netshape Form Eng, 2022, 14(2): 123
  • Related Articles

    [1]WANG Chunjin, CHEN Wenge, MENG Xiangrui, ZHANG Hui, ZHOU Xinwen. Influence of pore structure on mechanical properties of 3D printing porous tungsten[J]. Powder Metallurgy Technology, 2024, 42(6): 589-599. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010005
    [2]FAN Xinyi, HU Lingui, DENG Zehaochen, YANG Jiaqi, SHEN Xiaoping. Effect of phosphorus content on the mechanical and friction properties of oil-impregnated bronze bearings[J]. Powder Metallurgy Technology, 2024, 42(2): 200-206. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090006
    [3]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [4]WANG Jianzhong, AO Qingbo, MA Jun, LI Aijun. Preparation and compressive properties of Ti alloy fiber porous materials[J]. Powder Metallurgy Technology, 2023, 41(2): 125-130. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080005
    [5]ZHAO Shao-yang, YANG Kun, LIU Xiao-qing, LI Guang-zhong, WU Chen, TAN Pin. Effect of rolling direction on mechanical properties of powder-rolled porous titanium plates[J]. Powder Metallurgy Technology, 2022, 40(2): 172-178. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090015
    [6]LIANG Hao-wen, WANG Yue, CHEN Xiao-teng, LIU Zheng-bai, BAI Jia-ming. Progress of 3D printing bioceramic on artificial bone scaffolds[J]. Powder Metallurgy Technology, 2022, 40(2): 100-109. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030040
    [7]LI Ye, LIU Shi-feng, WANG Jian-zhong, WANG Li-qing, AO Qing-bo, MA Jun, WU Chen, TANG Hui-ping. Microstructure and mechanical properties of annealed Ti−6Al−3Nb−2Zr−1Mo titanium alloys[J]. Powder Metallurgy Technology, 2021, 39(4): 326-331. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050006
    [8]DONG Di, KANG Ju-lei, XIONG Ning, WANG Cheng-yang. Effects of HfC content on microstructure and mechanical properties of titanium zirconium molybdenum alloys[J]. Powder Metallurgy Technology, 2021, 39(3): 239-244. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030021
    [9]WEI Zi-chen, ZHANG Lin, QIN Ming-li, LI Xing-yu, QUE Zhong-you, QU Xuan-hui. Effect of powder size on microstructure and mechanical properties of rhenium[J]. Powder Metallurgy Technology, 2021, 39(3): 196-202. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030014
    [10]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005

Catalog

    Article Metrics

    Article views (200) PDF downloads (29) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return