Citation: | LIANG Hao-wen, WANG Yue, CHEN Xiao-teng, LIU Zheng-bai, BAI Jia-ming. Progress of 3D printing bioceramic on artificial bone scaffolds[J]. Powder Metallurgy Technology, 2022, 40(2): 100-109. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030040 |
[1] |
Myeroff C, Archdeacon M. Autogenous bone graft: donor sites and techniques. J Bone Joint Surg, 2011, 93(23): 2227 DOI: 10.2106/JBJS.J.01513
|
[2] |
Lin K, Sheikh R, Romanazzo S, et al. 3D printing of bioceramic scaffolds—barriers to the clinical translation: from promise to reality, and future perspectives. Materials, 2019, 12(17): 2660 DOI: 10.3390/ma12172660
|
[3] |
Zafar M J, Zhu D B, Zhang Z Y. 3D printing of bioceramics for bone tissue engineering. Materials, 2019, 12(20): 3361 DOI: 10.3390/ma12203361
|
[4] |
Hench L L. Bioceramics: from concept to clinic. J Am Ceram Soc, 1991, 74(7): 1487 DOI: 10.1111/j.1151-2916.1991.tb07132.x
|
[5] |
Best S M, Porter A E, Thian E S, et al. Bioceramics: past, present and for the future. J Eur Ceram Soc, 2008, 28(7): 1319 DOI: 10.1016/j.jeurceramsoc.2007.12.001
|
[6] |
Bose S, Ke D X, Sahasrabudhe H, et al. Additive manufacturing of biomaterials. Prog Mater Sci, 2018, 93: 45 DOI: 10.1016/j.pmatsci.2017.08.003
|
[7] |
Li W L, Liu W W, Li M S, et al. Nanoscale plasticity behavior of additive-manufactured zirconia-toughened alumina ceramics during nanoindentation. Materials, 2020, 13(4): 1006 DOI: 10.3390/ma13041006
|
[8] |
Markandan K, Chin J K, Tan M T T. Study on mechanical properties of zirconia‒alumina based ceramics // The 3rd International Conference on Process Engineering and Advanced Materials. Kuala Lumpur, 2014: 81
|
[9] |
中国国家标准化管理委员会. GB/T 35021—2018增材制造 工艺分类及原材料. 北京: 中国标准出版社, 2018
Standardization Administration. GB/T 50011—2018 Additive Manufacturing Process Classification and Raw Materials. Beijing: Standards Press of China, 2018
|
[10] |
Guo B B, Ji X Z, Wang W, et al. Highly flexible, thermally stable, and static dissipative nanocomposite with reduced functionalized graphene oxide processed through 3D printing. Composites Part B, 2021, 208: 108598 DOI: 10.1016/j.compositesb.2020.108598
|
[11] |
Guo B B, Zhang J S, Ananth K P, et al. Stretchable, self-healing and biodegradable water-based heater produced by 3D printing. Composites Part A, 2020, 133: 105863 DOI: 10.1016/j.compositesa.2020.105863
|
[12] |
Zhou T Y, Zhang L, Yao Q, et al. SLA 3D printing of high quality spine shaped β-TCP bioceramics for the hard tissue repair applications. Ceram Int, 2020, 46(6): 7609 DOI: 10.1016/j.ceramint.2019.11.261
|
[13] |
Feng C W, Zhang K Q, He R J, et al. Additive manufacturing of hydroxyapatite bioceramic scaffolds: Dispersion, digital light processing, sintering, mechanical properties, and biocompatibility. J Adv Ceram, 2020, 9: 360 DOI: 10.1007/s40145-020-0375-8
|
[14] |
Xia X G, Duan G L. Effect of solid loading on properties of zirconia ceramic by direct ink writing. Mater Res Express, 2021, 8(1): 015403 DOI: 10.1088/2053-1591/abd866
|
[15] |
Lee G, Carrillo M, Mckittrick J, et al. Fabrication of ceramic bone scaffolds by solvent jetting 3D printing and sintering: Towards load-bearing applications. Addit Manuf, 2020, 33: 101107
|
[16] |
Sun J X, Binner J, Bai J. 3D printing of zirconia via digital light processing: optimization of slurry and debinding process. J Eur Ceram Soc, 2020, 40(15): 5837 DOI: 10.1016/j.jeurceramsoc.2020.05.079
|
[17] |
Sun J X, Binner J, Bai J. Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography. J Eur Ceram Soc, 2019, 39(4): 1660 DOI: 10.1016/j.jeurceramsoc.2018.10.024
|
[18] |
Zhang K Q, Xie C, Wang G, et al. High solid loading, low viscosity photosensitive Al2O3 slurry for stereolithography based additive manufacturing. Ceram Int, 2019, 45(1): 203 DOI: 10.1016/j.ceramint.2018.09.152
|
[19] |
李克航. 采用光固化成型技术制备氧化铝陶瓷的研究[学位论文]. 天津: 天津大学, 2017
Li K H. Research on Fabricating Alumina Ceramics Through Stereolithography Technology [Dissertation]. Tianjin: Tianjin University, 2017
|
[20] |
张帅. 氧化铝的表面改性及光固化浆料的制备研究[学位论文]. 天津: 天津大学, 2017
Zhang S. Research of Surface Modification of α-Al2O3 and Preparation of UV-Curable Ceramic Suspensions [Dissertation]. Tianjin: Tianjin University, 2017
|
[21] |
Wang Z, Huang C Z, Wang J, et al. Development of a novel aqueous hydroxyapatite suspension for stereolithography applied to bone tissue engineering. Ceram Int, 2019, 45(3): 3902 DOI: 10.1016/j.ceramint.2018.11.063
|
[22] |
杨红霞, 刘卫东. 分散剂在陶瓷浆料制备中的应用. 中国陶瓷工业, 2005(2): 27 DOI: 10.3969/j.issn.1006-2874.2005.02.007
Yang H X, Liu W D. Application of dispersants in the preparation of slurry. China Ceram Ind, 2005(2): 27 DOI: 10.3969/j.issn.1006-2874.2005.02.007
|
[23] |
Irsen St H, Leukers B, Höckling Chr, et al. Bioceramic granulates for use in 3D printing: process engineering aspects. Materialwiss Werkstofftech, 2006, 37(6): 533 DOI: 10.1002/mawe.200600033
|
[24] |
Lu K, Hiser M, Wu W. Effect of particle size on three dimensional printed mesh structures. Powder Technol, 2009, 192(2): 178 DOI: 10.1016/j.powtec.2008.12.011
|
[25] |
Hwa L C, Rajoo S, Noor A M, et al. Recent advances in 3D printing of porous ceramics: A review. Curr Opin Solid State Mater Sci, 2017, 21(6): 323 DOI: 10.1016/j.cossms.2017.08.002
|
[26] |
Cima M, Sachs E, Fan T, et al. Three-Dimensional Printing Techniques: US Patent, 5387380. 1995-2-7
|
[27] |
Sun C N, Tian X Y, Wang L, et al. Effect of particle size gradation on the performance of glass-ceramic 3D printing process. Ceram Int, 2017, 43(1): 578 DOI: 10.1016/j.ceramint.2016.09.197
|
[28] |
刘雨, 陈张伟. 陶瓷光固化3D打印技术研究进展. 材料工程, 2020, 48(9): 1
Liu Y, Chen Z W. Research progress in photopolymerization-based 3D printing technology of ceramics. J Mater Eng, 2020, 48(9): 1
|
[29] |
Li H, Liu Y S, Liu Y S, et al. Effect of debinding temperature under an argon atmosphere on the microstructure and properties of 3D-printed alumina ceramics. Mater Charact, 2020, 168: 110548 DOI: 10.1016/j.matchar.2020.110548
|
[30] |
Li H, Liu Y S, Liu Y S, et al. Influence of debinding holding time on mechanical properties of 3D-printed alumina ceramic cores. Ceram Int, 2021, 47(4): 4884 DOI: 10.1016/j.ceramint.2020.10.061
|
[31] |
Wang K, Qiu M, Jiao C, et al. Study on defect-free debinding green body of ceramic formed by DLP technology. Ceram Int, 2020, 46(2): 2438 DOI: 10.1016/j.ceramint.2019.09.237
|
[32] |
石季平, 白雪, 刘宇阳, 等. AZO靶材热压致密化过程中晶粒生长规律研究. 粉末冶金技术, 2017, 35(5): 335
Shi J P, Bai X, Liu Y Y, et al. Study on grain growth of AZO target during densification process by hot pressing. Powder Metall Technol, 2017, 35(5): 335
|
[33] |
孙兰, 贾成厂, 曹瑞军. 纳米粉末烧结的研究现状与前景. 粉末冶金技术, 2006, 24(2): 146 DOI: 10.3321/j.issn:1001-3784.2006.02.015
Sun L, Jia C C, Cao R J. Research advance on nanopowder sintering. Powder Metall Technol, 2006, 24(2): 146 DOI: 10.3321/j.issn:1001-3784.2006.02.015
|
[34] |
Farzin A, Hassan S, Ebrahimi-Barough S, et al. A facile two step heat treatment strategy for development of bioceramic scaffolds for hard tissue engineering applications. Mater Sci Eng C, 2019, 105: 110009 DOI: 10.1016/j.msec.2019.110009
|
[35] |
Wu H D, Liu W, He R X, et al. Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing. Ceram Int, 2017, 43(1): 968 DOI: 10.1016/j.ceramint.2016.10.027
|
[36] |
Ahmed M K, Ramadan R, Afifi M, et al. Au-doped carbonated hydroxyapatite sputtered on alumina scaffolds via pulsed laser deposition for biomedical applications. J Mater Res Technol, 2020, 9(4): 8854 DOI: 10.1016/j.jmrt.2020.06.006
|
[37] |
刘芳, 周科朝, 刘咏. 原始粉料的球磨工艺对Ti/HA生物复合材料性能的影响. 粉末冶金技术, 2005, 23(2): 116
Liu F, Zhou K C, Liu Y. Effect of milling process on properties of Ti/HA biomedical composites. Powder Metall Technol, 2005, 23(2): 116
|
[38] |
Sharifianjazi F, Pakseresht A H, Asl M S, et al. Hydroxyapatite consolidated by zirconia: applications for dental implant. J Compos Compd, 2020, 2(2): 26
|
[39] |
Li X J, Yuan Y, Liu L Y, et al. 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration. Bio-Des Manuf, 2020, 3(1): 15 DOI: 10.1007/s42242-019-00056-5
|
[40] |
He D S, Zhuang C, Xu S Z, et al. 3D printing of Mg-substituted wollastonite reinforcing diopside porous bioceramics with enhanced mechanical and biological performances. Bioact Mater, 2016, 1(1): 85 DOI: 10.1016/j.bioactmat.2016.08.001
|
[41] |
Wang X J, Molino B Z, Pitkanen S, et al. 3D scaffolds of polycaprolactone/copper-doped bioactive glass: architecture engineering with additive manufacturing and cellular assessments in a coculture of bone marrow stem cells and endothelial cells. ACS Biomater Sci Eng, 2019, 5(9): 4496 DOI: 10.1021/acsbiomaterials.9b00105
|
[42] |
Galeta T, Raos P, Stojšić J, et al. Influence of structure on mechanical properties of 3D printed objects. Procedia Eng, 2016, 149: 100 DOI: 10.1016/j.proeng.2016.06.644
|
[43] |
Ali D, Ozalp M, Blanquer S B, et al. Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: A CFD analysis. Eur J Mech B Fluids, 2020, 79: 376 DOI: 10.1016/j.euromechflu.2019.09.015
|
[44] |
Chen H, Liu Y, Wang C Y, et al. Design and properties of biomimetic irregular scaffolds for bone tissue engineering. Comput Biol Med, 2021, 130: 104241 DOI: 10.1016/j.compbiomed.2021.104241
|
[45] |
王壮. 轻量化鞋底结构设计及3D打印[学位论文]. 哈尔滨: 哈尔滨工业大学, 2020
Wang Z. Lightweight Sole Structure Design and 3D Printing [Dissertation]. Harbin: Harbin Institute of Technology, 2020
|
[46] |
Yu S X, Sun J X, Bai J M, et al. Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Mater Des, 2019, 182: 108021 DOI: 10.1016/j.matdes.2019.108021
|
[47] |
Yao Y X, Qin W, Xing B H, et al. High performance hydroxyapatite ceramics and a triply periodic minimum surface structure fabricated by digital light processing 3D printing. J Adv Ceram, 2021, 10(1): 39 DOI: 10.1007/s40145-020-0415-4
|
[48] |
Liu S, Mo L, Bi G Y, et al. DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry. Ceram Int, 2021, 47(15): 21108 DOI: 10.1016/j.ceramint.2021.04.114
|
[49] |
Liu Z B, Liang H X, Shi T S, et al. Additive manufacturing of hydroxyapatite bone scaffolds via digital light processing and in vitro compatibility. Ceram Int, 2019, 45(8): 11079 DOI: 10.1016/j.ceramint.2019.02.195
|
[50] |
Huang X L, Dai H L, Hu Y F, et al. Development of a high solid loading β-TCP suspension with a low refractive index contrast for DLP-based ceramic stereolithography. J Eur Ceram Soc, 2021, 41(6): 3743 DOI: 10.1016/j.jeurceramsoc.2020.12.047
|
[51] |
Macchetta A, Turner I G, Bowen C R. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater, 2009, 5(4): 1319 DOI: 10.1016/j.actbio.2008.11.009
|
[52] |
Tang Y, Zhao K, Hu L, et al. Two-step freeze casting fabrication of hydroxyapatite porous scaffolds with bionic bone graded structure. Ceram Int, 2013, 39(8): 9703 DOI: 10.1016/j.ceramint.2013.04.038
|
[53] |
Marques C F, Olhero S M, Torres P M, et al. Novel sintering-free scaffolds obtained by additive manufacturing for concurrent bone regeneration and drug delivery: Proof of concept. Sci Eng C, 2019, 94: 426 DOI: 10.1016/j.msec.2018.09.050
|
[54] |
Kamboj N, Rodríguez M A, Rahmani R, et al. Bioceramic scaffolds by additive manufacturing for controlled delivery of the antibiotic vancomycin. Proc Est Acad Sci, 2019, 68(2): 185 DOI: 10.3176/proc.2019.2.10
|
[55] |
Touri M, Moztarzadeh F, Osman N A A, et al. Optimisation and biological activities of bioceramic robocast scaffolds provided with an oxygen-releasing coating for bone tissue engineering applications. Ceram Int, 2019, 45(1): 805 DOI: 10.1016/j.ceramint.2018.09.247
|
[56] |
Dang W T, Yi K, Ju E G, et al. 3D printed bioceramic scaffolds as a universal therapeutic platform for synergistic therapy of osteosarcoma. ACS Appl Mater Interfaces, 2021, 13(16): 18488 DOI: 10.1021/acsami.1c00553
|
[57] |
Tamjid E, Bohlouli M, Mohammadi S, et al. Sustainable drug release from highly porous and architecturally engineered composite scaffolds prepared by 3D printing. J Biomed Mater Res A, 2020, 108(6): 1426 DOI: 10.1002/jbm.a.36914
|
[58] |
Ma H S, Feng C, Chang J, et al. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater, 2018, 79: 37 DOI: 10.1016/j.actbio.2018.08.026
|
[59] |
Xu C J, Yuan Z L, Kohler N, et al. FePt nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. J Am Chem Soc, 2009, 131(42): 15346 DOI: 10.1021/ja905938a
|
[60] |
Jaque D, Maestro L M, Del Rosal B, et al. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6(16): 9494 DOI: 10.1039/C4NR00708E
|
[61] |
Da Li G, Lin Y, Pan T H, et al. Synthesis and characterization of magnetic bioactive glass-ceramics containing Mg ferrite for hyperthermia. Mater Sci Eng C, 2010, 30(1): 148 DOI: 10.1016/j.msec.2009.09.011
|
[62] |
董少杰, 王旭东, 沈国芳, 等. 生物陶瓷支架的功能改性及应用研究进展. 无机材料学报, 2020, 35(8): 867 DOI: 10.15541/jim20190561
Dong S J, Wang X D, Shen G F, et al. Research progress on functional modifications and applications of bioceramic scaffolds. J Inorg Mater, 2020, 35(8): 867 DOI: 10.15541/jim20190561
|
[63] |
Ma H S, Jiang C, Zhai D, et al. A bifunctional biomaterial with photothermal effect for tumor therapy and bone regeneration. Adv Funct Mater, 2016, 26(8): 1197 DOI: 10.1002/adfm.201504142
|
[64] |
Ma H S, Ma Z J, Chen Q F, et al. Bifunctional, copper-doped, mesoporous silica nanosphere-modified, bioceramic scaffolds for bone tumor therapy. Front Chem, 2020, 8: 610232 DOI: 10.3389/fchem.2020.610232
|
[65] |
Ma H S, Li T, Huan Z G, et al. 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer. NPG Asia Mater, 2018, 10(4): 31 DOI: 10.1038/s41427-018-0015-8
|
[66] |
Ma H S, Luo J, Sun Z, et al. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration. Biomaterials, 2016, 111: 138 DOI: 10.1016/j.biomaterials.2016.10.005
|
[67] |
Zhang Y L, Zhai D, Xu M C, et al. 3D-printed bioceramic scaffolds with a Fe3O4/graphene oxide nanocomposite interface for hyperthermia therapy of bone tumor cells. J Mater Chem B, 2016, 4(17): 2874 DOI: 10.1039/C6TB00390G
|
[68] |
Zhuang H, Lin R, Liu Y, et al. Three-dimensional-printed bioceramic scaffolds with osteogenic activity for simultaneous photo/magnetothermal therapy of bone tumors. ACS Biomater Sci Eng, 2019, 5(12): 6725 DOI: 10.1021/acsbiomaterials.9b01095
|
[69] |
Hembus J, Rößler L, Jackszis M, et al. Influence of metallic deposition on ceramic femoral heads on the wear behavior of artificial hip joints: A simulator study. Materials, 2020, 13(16): 3569 DOI: 10.3390/ma13163569
|
[70] |
Cook S D, Thomas K A, Kay J F, et al. Hydroxyapatite-coated titanium for orthopedic implant applications. Clin Orthop Relat Res, 1988, 232: 225
|
[71] |
Lombardi Jr A V, Berend K R, Mallory T H. Hydroxyapatite-coated titanium porous plasma spray tapered stem: experience at 15 to 18 years. Clin Orthop Relat Res, 2006, 453: 81 DOI: 10.1097/01.blo.0000238872.01767.09
|
[72] |
Nakahira A, Murakami T, Onoki T, et al. Fabrication of porous hydroxyapatite using hydrothermal hot pressing and post-sintering. J Am Ceram Soc, 2005, 88(5): 1334 DOI: 10.1111/j.1551-2916.2005.00238.x
|
[73] |
Shao H F, Liu A, Ke X R, et al. 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects. J Mater Chem B, 2017, 5(16): 2941 DOI: 10.1039/C7TB00217C
|
[74] |
Shao H F, Sun M, Zhang F, et al. Custom repair of mandibular bone defects with 3D printed bioceramic scaffolds. J Dent Res, 2018, 97(1): 68 DOI: 10.1177/0022034517734846
|
[75] |
Maliha S G, Lopez C D, Coelho P G, et al. Bone tissue engineering in the growing calvarium using dipyridamole-coated 3D printed bioceramic scaffolds: construct optimization and effects to cranial suture patency. Plast Reconstr Surg, 2020, 145(2): 337e DOI: 10.1097/PRS.0000000000006483
|
[76] |
Shen C C, Zhang Y, Li Q F, et al. Application of three-dimensional printing technique in artificial bone fabrication for bone defect after mandibular angle ostectomy. Chin J Rep Reconstr Surg, 2014, 28(3): 300
|
[77] |
Maroulakos M, Kamperos G, Tayebi L, et al. Applications of 3D printing on craniofacial bone repair: A systematic review. J Dent, 2019, 80: 1 DOI: 10.1016/j.jdent.2018.11.004
|
[78] |
Lee U L, Lim J Y, Park S N, et al. A clinical trial to evaluate the efficacy and safety of 3D printed bioceramic implants for the reconstruction of zygomatic bone defects. Materials, 2020, 13(20): 4515 DOI: 10.3390/ma13204515
|