AdvancedSearch
LIANG Hao-wen, WANG Yue, CHEN Xiao-teng, LIU Zheng-bai, BAI Jia-ming. Progress of 3D printing bioceramic on artificial bone scaffolds[J]. Powder Metallurgy Technology, 2022, 40(2): 100-109. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030040
Citation: LIANG Hao-wen, WANG Yue, CHEN Xiao-teng, LIU Zheng-bai, BAI Jia-ming. Progress of 3D printing bioceramic on artificial bone scaffolds[J]. Powder Metallurgy Technology, 2022, 40(2): 100-109. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030040

Progress of 3D printing bioceramic on artificial bone scaffolds

More Information
  • Corresponding author:

    BAI Jia-ming, E-mail: baijm@sustech.edu.cn

  • Received Date: March 23, 2021
  • Accepted Date: May 10, 2021
  • Available Online: May 10, 2021
  • Bioceramics are the ideal artificial materials of the bone scaffolds to repair the bone defects next to the traditional metal materials. The combination of additive manufacturing and bioceramics provides the enormous possibilities to achieve the customized and personalized scaffolds with more complex structures for the personalized therapy. Nowadays, the bioceramics scaffolds prepared by the additive manufacturing show the great prospects, but meet the problems of poor mechanical strength and single biofunction. To improve the mechanical properties and expand the biological functions of the bioceramics scaffolds, the influence of the slurry/powder system, debinding and sintering process, composite materials, and structure design on the mechanical properties of the bioceramics scaffolds was concluded and analyzed in this paper. The progress of the multifunctional bioceramics scaffolds was summarized from two aspects of drug release and cancer treatment. The research status of bioceramics scaffolds by additive manufacturing in vivo was also introduced. Finally, the development of bioceramics scaffolds by additive manufacturing was prospected
  • [1]
    Myeroff C, Archdeacon M. Autogenous bone graft: donor sites and techniques. J Bone Joint Surg, 2011, 93(23): 2227 DOI: 10.2106/JBJS.J.01513
    [2]
    Lin K, Sheikh R, Romanazzo S, et al. 3D printing of bioceramic scaffolds—barriers to the clinical translation: from promise to reality, and future perspectives. Materials, 2019, 12(17): 2660 DOI: 10.3390/ma12172660
    [3]
    Zafar M J, Zhu D B, Zhang Z Y. 3D printing of bioceramics for bone tissue engineering. Materials, 2019, 12(20): 3361 DOI: 10.3390/ma12203361
    [4]
    Hench L L. Bioceramics: from concept to clinic. J Am Ceram Soc, 1991, 74(7): 1487 DOI: 10.1111/j.1151-2916.1991.tb07132.x
    [5]
    Best S M, Porter A E, Thian E S, et al. Bioceramics: past, present and for the future. J Eur Ceram Soc, 2008, 28(7): 1319 DOI: 10.1016/j.jeurceramsoc.2007.12.001
    [6]
    Bose S, Ke D X, Sahasrabudhe H, et al. Additive manufacturing of biomaterials. Prog Mater Sci, 2018, 93: 45 DOI: 10.1016/j.pmatsci.2017.08.003
    [7]
    Li W L, Liu W W, Li M S, et al. Nanoscale plasticity behavior of additive-manufactured zirconia-toughened alumina ceramics during nanoindentation. Materials, 2020, 13(4): 1006 DOI: 10.3390/ma13041006
    [8]
    Markandan K, Chin J K, Tan M T T. Study on mechanical properties of zirconia‒alumina based ceramics // The 3rd International Conference on Process Engineering and Advanced Materials. Kuala Lumpur, 2014: 81
    [9]
    中国国家标准化管理委员会. GB/T 35021—2018增材制造 工艺分类及原材料. 北京: 中国标准出版社, 2018

    Standardization Administration. GB/T 50011—2018 Additive Manufacturing Process Classification and Raw Materials. Beijing: Standards Press of China, 2018
    [10]
    Guo B B, Ji X Z, Wang W, et al. Highly flexible, thermally stable, and static dissipative nanocomposite with reduced functionalized graphene oxide processed through 3D printing. Composites Part B, 2021, 208: 108598 DOI: 10.1016/j.compositesb.2020.108598
    [11]
    Guo B B, Zhang J S, Ananth K P, et al. Stretchable, self-healing and biodegradable water-based heater produced by 3D printing. Composites Part A, 2020, 133: 105863 DOI: 10.1016/j.compositesa.2020.105863
    [12]
    Zhou T Y, Zhang L, Yao Q, et al. SLA 3D printing of high quality spine shaped β-TCP bioceramics for the hard tissue repair applications. Ceram Int, 2020, 46(6): 7609 DOI: 10.1016/j.ceramint.2019.11.261
    [13]
    Feng C W, Zhang K Q, He R J, et al. Additive manufacturing of hydroxyapatite bioceramic scaffolds: Dispersion, digital light processing, sintering, mechanical properties, and biocompatibility. J Adv Ceram, 2020, 9: 360 DOI: 10.1007/s40145-020-0375-8
    [14]
    Xia X G, Duan G L. Effect of solid loading on properties of zirconia ceramic by direct ink writing. Mater Res Express, 2021, 8(1): 015403 DOI: 10.1088/2053-1591/abd866
    [15]
    Lee G, Carrillo M, Mckittrick J, et al. Fabrication of ceramic bone scaffolds by solvent jetting 3D printing and sintering: Towards load-bearing applications. Addit Manuf, 2020, 33: 101107
    [16]
    Sun J X, Binner J, Bai J. 3D printing of zirconia via digital light processing: optimization of slurry and debinding process. J Eur Ceram Soc, 2020, 40(15): 5837 DOI: 10.1016/j.jeurceramsoc.2020.05.079
    [17]
    Sun J X, Binner J, Bai J. Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography. J Eur Ceram Soc, 2019, 39(4): 1660 DOI: 10.1016/j.jeurceramsoc.2018.10.024
    [18]
    Zhang K Q, Xie C, Wang G, et al. High solid loading, low viscosity photosensitive Al2O3 slurry for stereolithography based additive manufacturing. Ceram Int, 2019, 45(1): 203 DOI: 10.1016/j.ceramint.2018.09.152
    [19]
    李克航. 采用光固化成型技术制备氧化铝陶瓷的研究[学位论文]. 天津: 天津大学, 2017

    Li K H. Research on Fabricating Alumina Ceramics Through Stereolithography Technology [Dissertation]. Tianjin: Tianjin University, 2017
    [20]
    张帅. 氧化铝的表面改性及光固化浆料的制备研究[学位论文]. 天津: 天津大学, 2017

    Zhang S. Research of Surface Modification of α-Al2O3 and Preparation of UV-Curable Ceramic Suspensions [Dissertation]. Tianjin: Tianjin University, 2017
    [21]
    Wang Z, Huang C Z, Wang J, et al. Development of a novel aqueous hydroxyapatite suspension for stereolithography applied to bone tissue engineering. Ceram Int, 2019, 45(3): 3902 DOI: 10.1016/j.ceramint.2018.11.063
    [22]
    杨红霞, 刘卫东. 分散剂在陶瓷浆料制备中的应用. 中国陶瓷工业, 2005(2): 27 DOI: 10.3969/j.issn.1006-2874.2005.02.007

    Yang H X, Liu W D. Application of dispersants in the preparation of slurry. China Ceram Ind, 2005(2): 27 DOI: 10.3969/j.issn.1006-2874.2005.02.007
    [23]
    Irsen St H, Leukers B, Höckling Chr, et al. Bioceramic granulates for use in 3D printing: process engineering aspects. Materialwiss Werkstofftech, 2006, 37(6): 533 DOI: 10.1002/mawe.200600033
    [24]
    Lu K, Hiser M, Wu W. Effect of particle size on three dimensional printed mesh structures. Powder Technol, 2009, 192(2): 178 DOI: 10.1016/j.powtec.2008.12.011
    [25]
    Hwa L C, Rajoo S, Noor A M, et al. Recent advances in 3D printing of porous ceramics: A review. Curr Opin Solid State Mater Sci, 2017, 21(6): 323 DOI: 10.1016/j.cossms.2017.08.002
    [26]
    Cima M, Sachs E, Fan T, et al. Three-Dimensional Printing Techniques: US Patent, 5387380. 1995-2-7
    [27]
    Sun C N, Tian X Y, Wang L, et al. Effect of particle size gradation on the performance of glass-ceramic 3D printing process. Ceram Int, 2017, 43(1): 578 DOI: 10.1016/j.ceramint.2016.09.197
    [28]
    刘雨, 陈张伟. 陶瓷光固化3D打印技术研究进展. 材料工程, 2020, 48(9): 1

    Liu Y, Chen Z W. Research progress in photopolymerization-based 3D printing technology of ceramics. J Mater Eng, 2020, 48(9): 1
    [29]
    Li H, Liu Y S, Liu Y S, et al. Effect of debinding temperature under an argon atmosphere on the microstructure and properties of 3D-printed alumina ceramics. Mater Charact, 2020, 168: 110548 DOI: 10.1016/j.matchar.2020.110548
    [30]
    Li H, Liu Y S, Liu Y S, et al. Influence of debinding holding time on mechanical properties of 3D-printed alumina ceramic cores. Ceram Int, 2021, 47(4): 4884 DOI: 10.1016/j.ceramint.2020.10.061
    [31]
    Wang K, Qiu M, Jiao C, et al. Study on defect-free debinding green body of ceramic formed by DLP technology. Ceram Int, 2020, 46(2): 2438 DOI: 10.1016/j.ceramint.2019.09.237
    [32]
    石季平, 白雪, 刘宇阳, 等. AZO靶材热压致密化过程中晶粒生长规律研究. 粉末冶金技术, 2017, 35(5): 335

    Shi J P, Bai X, Liu Y Y, et al. Study on grain growth of AZO target during densification process by hot pressing. Powder Metall Technol, 2017, 35(5): 335
    [33]
    孙兰, 贾成厂, 曹瑞军. 纳米粉末烧结的研究现状与前景. 粉末冶金技术, 2006, 24(2): 146 DOI: 10.3321/j.issn:1001-3784.2006.02.015

    Sun L, Jia C C, Cao R J. Research advance on nanopowder sintering. Powder Metall Technol, 2006, 24(2): 146 DOI: 10.3321/j.issn:1001-3784.2006.02.015
    [34]
    Farzin A, Hassan S, Ebrahimi-Barough S, et al. A facile two step heat treatment strategy for development of bioceramic scaffolds for hard tissue engineering applications. Mater Sci Eng C, 2019, 105: 110009 DOI: 10.1016/j.msec.2019.110009
    [35]
    Wu H D, Liu W, He R X, et al. Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing. Ceram Int, 2017, 43(1): 968 DOI: 10.1016/j.ceramint.2016.10.027
    [36]
    Ahmed M K, Ramadan R, Afifi M, et al. Au-doped carbonated hydroxyapatite sputtered on alumina scaffolds via pulsed laser deposition for biomedical applications. J Mater Res Technol, 2020, 9(4): 8854 DOI: 10.1016/j.jmrt.2020.06.006
    [37]
    刘芳, 周科朝, 刘咏. 原始粉料的球磨工艺对Ti/HA生物复合材料性能的影响. 粉末冶金技术, 2005, 23(2): 116

    Liu F, Zhou K C, Liu Y. Effect of milling process on properties of Ti/HA biomedical composites. Powder Metall Technol, 2005, 23(2): 116
    [38]
    Sharifianjazi F, Pakseresht A H, Asl M S, et al. Hydroxyapatite consolidated by zirconia: applications for dental implant. J Compos Compd, 2020, 2(2): 26
    [39]
    Li X J, Yuan Y, Liu L Y, et al. 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration. Bio-Des Manuf, 2020, 3(1): 15 DOI: 10.1007/s42242-019-00056-5
    [40]
    He D S, Zhuang C, Xu S Z, et al. 3D printing of Mg-substituted wollastonite reinforcing diopside porous bioceramics with enhanced mechanical and biological performances. Bioact Mater, 2016, 1(1): 85 DOI: 10.1016/j.bioactmat.2016.08.001
    [41]
    Wang X J, Molino B Z, Pitkanen S, et al. 3D scaffolds of polycaprolactone/copper-doped bioactive glass: architecture engineering with additive manufacturing and cellular assessments in a coculture of bone marrow stem cells and endothelial cells. ACS Biomater Sci Eng, 2019, 5(9): 4496 DOI: 10.1021/acsbiomaterials.9b00105
    [42]
    Galeta T, Raos P, Stojšić J, et al. Influence of structure on mechanical properties of 3D printed objects. Procedia Eng, 2016, 149: 100 DOI: 10.1016/j.proeng.2016.06.644
    [43]
    Ali D, Ozalp M, Blanquer S B, et al. Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: A CFD analysis. Eur J Mech B Fluids, 2020, 79: 376 DOI: 10.1016/j.euromechflu.2019.09.015
    [44]
    Chen H, Liu Y, Wang C Y, et al. Design and properties of biomimetic irregular scaffolds for bone tissue engineering. Comput Biol Med, 2021, 130: 104241 DOI: 10.1016/j.compbiomed.2021.104241
    [45]
    王壮. 轻量化鞋底结构设计及3D打印[学位论文]. 哈尔滨: 哈尔滨工业大学, 2020

    Wang Z. Lightweight Sole Structure Design and 3D Printing [Dissertation]. Harbin: Harbin Institute of Technology, 2020
    [46]
    Yu S X, Sun J X, Bai J M, et al. Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Mater Des, 2019, 182: 108021 DOI: 10.1016/j.matdes.2019.108021
    [47]
    Yao Y X, Qin W, Xing B H, et al. High performance hydroxyapatite ceramics and a triply periodic minimum surface structure fabricated by digital light processing 3D printing. J Adv Ceram, 2021, 10(1): 39 DOI: 10.1007/s40145-020-0415-4
    [48]
    Liu S, Mo L, Bi G Y, et al. DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry. Ceram Int, 2021, 47(15): 21108 DOI: 10.1016/j.ceramint.2021.04.114
    [49]
    Liu Z B, Liang H X, Shi T S, et al. Additive manufacturing of hydroxyapatite bone scaffolds via digital light processing and in vitro compatibility. Ceram Int, 2019, 45(8): 11079 DOI: 10.1016/j.ceramint.2019.02.195
    [50]
    Huang X L, Dai H L, Hu Y F, et al. Development of a high solid loading β-TCP suspension with a low refractive index contrast for DLP-based ceramic stereolithography. J Eur Ceram Soc, 2021, 41(6): 3743 DOI: 10.1016/j.jeurceramsoc.2020.12.047
    [51]
    Macchetta A, Turner I G, Bowen C R. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater, 2009, 5(4): 1319 DOI: 10.1016/j.actbio.2008.11.009
    [52]
    Tang Y, Zhao K, Hu L, et al. Two-step freeze casting fabrication of hydroxyapatite porous scaffolds with bionic bone graded structure. Ceram Int, 2013, 39(8): 9703 DOI: 10.1016/j.ceramint.2013.04.038
    [53]
    Marques C F, Olhero S M, Torres P M, et al. Novel sintering-free scaffolds obtained by additive manufacturing for concurrent bone regeneration and drug delivery: Proof of concept. Sci Eng C, 2019, 94: 426 DOI: 10.1016/j.msec.2018.09.050
    [54]
    Kamboj N, Rodríguez M A, Rahmani R, et al. Bioceramic scaffolds by additive manufacturing for controlled delivery of the antibiotic vancomycin. Proc Est Acad Sci, 2019, 68(2): 185 DOI: 10.3176/proc.2019.2.10
    [55]
    Touri M, Moztarzadeh F, Osman N A A, et al. Optimisation and biological activities of bioceramic robocast scaffolds provided with an oxygen-releasing coating for bone tissue engineering applications. Ceram Int, 2019, 45(1): 805 DOI: 10.1016/j.ceramint.2018.09.247
    [56]
    Dang W T, Yi K, Ju E G, et al. 3D printed bioceramic scaffolds as a universal therapeutic platform for synergistic therapy of osteosarcoma. ACS Appl Mater Interfaces, 2021, 13(16): 18488 DOI: 10.1021/acsami.1c00553
    [57]
    Tamjid E, Bohlouli M, Mohammadi S, et al. Sustainable drug release from highly porous and architecturally engineered composite scaffolds prepared by 3D printing. J Biomed Mater Res A, 2020, 108(6): 1426 DOI: 10.1002/jbm.a.36914
    [58]
    Ma H S, Feng C, Chang J, et al. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater, 2018, 79: 37 DOI: 10.1016/j.actbio.2018.08.026
    [59]
    Xu C J, Yuan Z L, Kohler N, et al. FePt nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. J Am Chem Soc, 2009, 131(42): 15346 DOI: 10.1021/ja905938a
    [60]
    Jaque D, Maestro L M, Del Rosal B, et al. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6(16): 9494 DOI: 10.1039/C4NR00708E
    [61]
    Da Li G, Lin Y, Pan T H, et al. Synthesis and characterization of magnetic bioactive glass-ceramics containing Mg ferrite for hyperthermia. Mater Sci Eng C, 2010, 30(1): 148 DOI: 10.1016/j.msec.2009.09.011
    [62]
    董少杰, 王旭东, 沈国芳, 等. 生物陶瓷支架的功能改性及应用研究进展. 无机材料学报, 2020, 35(8): 867 DOI: 10.15541/jim20190561

    Dong S J, Wang X D, Shen G F, et al. Research progress on functional modifications and applications of bioceramic scaffolds. J Inorg Mater, 2020, 35(8): 867 DOI: 10.15541/jim20190561
    [63]
    Ma H S, Jiang C, Zhai D, et al. A bifunctional biomaterial with photothermal effect for tumor therapy and bone regeneration. Adv Funct Mater, 2016, 26(8): 1197 DOI: 10.1002/adfm.201504142
    [64]
    Ma H S, Ma Z J, Chen Q F, et al. Bifunctional, copper-doped, mesoporous silica nanosphere-modified, bioceramic scaffolds for bone tumor therapy. Front Chem, 2020, 8: 610232 DOI: 10.3389/fchem.2020.610232
    [65]
    Ma H S, Li T, Huan Z G, et al. 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer. NPG Asia Mater, 2018, 10(4): 31 DOI: 10.1038/s41427-018-0015-8
    [66]
    Ma H S, Luo J, Sun Z, et al. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration. Biomaterials, 2016, 111: 138 DOI: 10.1016/j.biomaterials.2016.10.005
    [67]
    Zhang Y L, Zhai D, Xu M C, et al. 3D-printed bioceramic scaffolds with a Fe3O4/graphene oxide nanocomposite interface for hyperthermia therapy of bone tumor cells. J Mater Chem B, 2016, 4(17): 2874 DOI: 10.1039/C6TB00390G
    [68]
    Zhuang H, Lin R, Liu Y, et al. Three-dimensional-printed bioceramic scaffolds with osteogenic activity for simultaneous photo/magnetothermal therapy of bone tumors. ACS Biomater Sci Eng, 2019, 5(12): 6725 DOI: 10.1021/acsbiomaterials.9b01095
    [69]
    Hembus J, Rößler L, Jackszis M, et al. Influence of metallic deposition on ceramic femoral heads on the wear behavior of artificial hip joints: A simulator study. Materials, 2020, 13(16): 3569 DOI: 10.3390/ma13163569
    [70]
    Cook S D, Thomas K A, Kay J F, et al. Hydroxyapatite-coated titanium for orthopedic implant applications. Clin Orthop Relat Res, 1988, 232: 225
    [71]
    Lombardi Jr A V, Berend K R, Mallory T H. Hydroxyapatite-coated titanium porous plasma spray tapered stem: experience at 15 to 18 years. Clin Orthop Relat Res, 2006, 453: 81 DOI: 10.1097/01.blo.0000238872.01767.09
    [72]
    Nakahira A, Murakami T, Onoki T, et al. Fabrication of porous hydroxyapatite using hydrothermal hot pressing and post-sintering. J Am Ceram Soc, 2005, 88(5): 1334 DOI: 10.1111/j.1551-2916.2005.00238.x
    [73]
    Shao H F, Liu A, Ke X R, et al. 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects. J Mater Chem B, 2017, 5(16): 2941 DOI: 10.1039/C7TB00217C
    [74]
    Shao H F, Sun M, Zhang F, et al. Custom repair of mandibular bone defects with 3D printed bioceramic scaffolds. J Dent Res, 2018, 97(1): 68 DOI: 10.1177/0022034517734846
    [75]
    Maliha S G, Lopez C D, Coelho P G, et al. Bone tissue engineering in the growing calvarium using dipyridamole-coated 3D printed bioceramic scaffolds: construct optimization and effects to cranial suture patency. Plast Reconstr Surg, 2020, 145(2): 337e DOI: 10.1097/PRS.0000000000006483
    [76]
    Shen C C, Zhang Y, Li Q F, et al. Application of three-dimensional printing technique in artificial bone fabrication for bone defect after mandibular angle ostectomy. Chin J Rep Reconstr Surg, 2014, 28(3): 300
    [77]
    Maroulakos M, Kamperos G, Tayebi L, et al. Applications of 3D printing on craniofacial bone repair: A systematic review. J Dent, 2019, 80: 1 DOI: 10.1016/j.jdent.2018.11.004
    [78]
    Lee U L, Lim J Y, Park S N, et al. A clinical trial to evaluate the efficacy and safety of 3D printed bioceramic implants for the reconstruction of zygomatic bone defects. Materials, 2020, 13(20): 4515 DOI: 10.3390/ma13204515
  • Related Articles

    [1]WANG Lei, GAO Jinchang, BAO Xiaogang, LIN Wanming, GUO Ruipeng. Effects of mechanical milling on microstructure and tensile properties of CoCrFeMnNi high-entropy alloys produced by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001
    [2]ZHONG Tao, GUO Rongzhen, LIN Xiaochuan, LIU Longting, WANG Jiaxin, XU Zhiqiang, GUO Shibo. Effect of plasma sintering process on the mechanical properties of WC/Cr3C2/La2O3 cutting tool materials[J]. Powder Metallurgy Technology, 2024, 42(6): 582-588. DOI: 10.19591/j.cnki.cn11-1974/tf.2024040013
    [3]LI Yuanyuan, WU Ying, PAN Xiaoqiang, LIU Tingwei. Preparation of boron carbide stainless steel composites by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 381-387. DOI: 10.19591/j.cnki.cn11-1974/tf.2023100003
    [4]WANG Na, WU Zhou, ZHU Qi, XI Sha, ZHANG Xiao, ZHOU Sha, LI Jing, WANG Yuqing. Preparation of Mo–Ni alloys by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 361-366. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030015
    [5]WANG Bin, CHEN Ruizhi, LI Jianfeng, CHEN Pengqi, CHENG Jigui. Preparation of binderless SiCw/WC cemented carbides by spark plasma sintering[J]. Powder Metallurgy Technology, 2023, 41(1): 38-43. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050012
    [6]Fe50Mn30Co10Cr10-xNbC high-entropy alloy composites prepared by SPS technology and characterization of properties[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010004
    [7]YAN Xing-heng, ZHOU Xin-gui, WANG Hong-lei. Research progress of B4C prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2022, 40(6): 516-526. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070001
    [8]WU Xiao-jun. Preparation parameter optimization and mechanical properties of the graphene-reinforced TC11 titanium alloys prepared by spark plasma sintering used for engine[J]. Powder Metallurgy Technology, 2022, 40(4): 291-295. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110010
    [9]SHEN Dan-ni, WANG Chao-ning, GAO Peng, KONG Jian. Ultrafine grained W–Ti alloys prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2021, 39(2): 165-171. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110008
    [10]DENG Lin, JIANG Li-hua. Microstructure and mechanical properties of Ti-21.5Nb alloy prepared by powder sintering used for internal combustion engine[J]. Powder Metallurgy Technology, 2020, 38(3): 201-205. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.006

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return