AdvancedSearch
YANG Fang, GAO Yang, DU Peng, CHEN Leiming, CHENG Junwei. Microstructure and mechanical properties of WC-based cemented carbides with different binder phases[J]. Powder Metallurgy Technology, 2023, 41(2): 187-192. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060003
Citation: YANG Fang, GAO Yang, DU Peng, CHEN Leiming, CHENG Junwei. Microstructure and mechanical properties of WC-based cemented carbides with different binder phases[J]. Powder Metallurgy Technology, 2023, 41(2): 187-192. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060003

Microstructure and mechanical properties of WC-based cemented carbides with different binder phases

More Information
  • Corresponding author:

    GAO Yang, E-mail: gaoyang4435@163.com

  • Received Date: June 21, 2021
  • Available Online: March 21, 2023
  • The WC‒20Fe, WC‒20Ni, and WC‒20Co cemented carbides were prepared by gas pressure sintering at 1450 ℃ using the WC powders with the theoretical carbon content (mass fraction). The effects of metal binders on the microstructure and mechanical properties of the cemented carbides were investigated by X-ray diffractometer (XRD), scanning electron microscope (SEM), electron probe microanalysis (EPMA), and mechanical properties tester. The results show that, the brittle η-phase (Fe3W3C) appears in the WC‒20Fe alloys, and finer grains are observed due to the lower solubility of W (1.915% by mass) in Fe binder. However, the graphite phase (C) is detected in the WC‒20Co alloys, the solubility of W in Ni binder can reach to 10.753% by mass, resulting in the largest grain size and the lowest hardness. The WC‒20Co alloys show the two-phase region (WC+γ), which exhibit the highest bending strength and hardness of 2720 MPa and 934.41 kg∙mm‒2, respectively. The fracture mode of all the alloys can be described as the brittle fracture and intergranular fracture. Moreover, the fracture surface of the WC‒20Co alloys shows the obvious binder tearing character.

  • [1]
    Sun J, Zhao J, Gong F, et al. Development and application of WC-based alloys bonded with alternative binder phase. Crit Rev Solid State, 2019, 44(3): 211 DOI: 10.1080/10408436.2018.1483320
    [2]
    Santos R F, Ferro Rocha A M, Bastos A C, et al. Microstructural characterization and corrosion resistance of WC‒Ni‒Cr‒Mo composite—The effect of Mo. Int J Refract Met Hard Mater, 2020, 86: 105090 DOI: 10.1016/j.ijrmhm.2019.105090
    [3]
    Ortner H M, Ettmayer P, Kolaska H. The history of the technological progress of hardmetals. Int J Refract Met Hard Mater, 2014, 44: 148 DOI: 10.1016/j.ijrmhm.2013.07.014
    [4]
    Pan Y F, Liu A J, Huang L. Effects of metal binder content and carbide grain size on the microstructure and properties of SPS manufactured WC‒Fe composites. J Alloys Compd, 2019, 784: 519 DOI: 10.1016/j.jallcom.2019.01.057
    [5]
    Guo Z X, Xiong J, Yang M, et al. Characterization and properties of MTCVD Ti(C, N) coated cemented carbide substrates with Fe/Ni binder. Int J Refract Met Hard Mater, 2010, 28(2): 238 DOI: 10.1016/j.ijrmhm.2009.10.004
    [6]
    万小虎, 李文鹏, 苏华. 一种高强度、高硬度WC‒6Ni硬质合金的研究. 粉末冶金技术, 2015, 33(5): 323 DOI: 10.3969/j.issn.1001-3784.2015.05.001

    Wan X H, Li W P, Su H. The study of a cemented carbide WC‒6Ni with high-strength and high hardness. Powder Metall Technol, 2015, 33(5): 323 DOI: 10.3969/j.issn.1001-3784.2015.05.001
    [7]
    羊建高, 谭敦强, 陈颢. 硬质合金. 长沙: 中南大学出版社, 2012

    Yang J G, Tan D Q, Chen H. Cemented Carbide. Changsha: Central South University Press, 2012
    [8]
    Shon I J, Jeong I K, Ko I Y, et al. Sintering behavior and mechanical properties of WC‒10Co, WC‒10Ni and WC‒10Fe hard materials produced by high-frequency induction heated sintering. Ceram Int, 2009, 35(1): 339 DOI: 10.1016/j.ceramint.2007.11.003
    [9]
    Gu L, Huang J, Xie C. Effects of carbon content on microstructure and properties of WC‒20Co cemented carbides. Int J Refract Met Hard Mater, 2014, 42: 228 DOI: 10.1016/j.ijrmhm.2013.09.010
    [10]
    Trung T B, Zuhailawati H, Ahmad Z A, et al. Sintering characteristics and properties of WC-10AISI304 (stainless steel) hardmetals with added graphite. Mater Sci Eng A, 2014, 605: 210 DOI: 10.1016/j.msea.2014.03.053
    [11]
    Borgh I, Hedström P, Borgenstam A, et al. Effect of carbon activity and powder particle size on WC grain coarsening during sintering of cemented carbides. Int J Refract Met Hard Mater, 2014, 42: 30 DOI: 10.1016/j.ijrmhm.2013.10.004
    [12]
    Borgh I, Hedström P, Persson T, et al. Microstructure, grain size distribution and grain shape in WC–Co alloys sintered at different carbon activities. Int J Refract Met Hard Mater, 2014, 43: 205 DOI: 10.1016/j.ijrmhm.2013.12.007
    [13]
    Bounhoure V, Lay S, Charlot F, et al. Effect of C content on the microstructure evolution during early solid state sintering of WC‒Co alloys. Int J Refract Met Hard Mater, 2014, 44: 27 DOI: 10.1016/j.ijrmhm.2013.12.012
    [14]
    Konyashin I, Hlawatschek S, Ries B, et al. On the mechanism of WC coarsening in WC‒Co hardmetals with various carbon contents. Int J Refract Met Hard Mater, 2009, 27(2): 234 DOI: 10.1016/j.ijrmhm.2008.09.001
    [15]
    Kim S, Han S H, Park J K, et al. Variation of WC grain shape with carbon content in the WC‒Co alloys during liquid-phase sintering. Scr Mater, 2003, 48(5): 635 DOI: 10.1016/S1359-6462(02)00464-5
    [16]
    Uhrenius B, Pastor H, Pauty E. On the composition of Fe‒Ni‒Co‒WC-based cemented carbides. Int J Refract Met Hard Mater, 1997, 15(1-3): 139 DOI: 10.1016/S0263-4368(96)00023-6
    [17]
    Fernandes C M, Senos A M R. Cemented carbide phase diagrams: A review. Int J Refract Met Hard Mater, 2011, 29(4): 405 DOI: 10.1016/j.ijrmhm.2011.02.004
    [18]
    Wittmann B, Schubert W D, Lux B. WC grain growth and grain growth inhibition in nickel and iron binder hardmetals. Int J Refract Met Hard Mater, 2002, 20(1): 51 DOI: 10.1016/S0263-4368(01)00070-1
    [19]
    郭瑜, 李志友, 李烨. η相粉末的制备及烧结工艺对板状WC晶粒的影响. 粉末冶金技术, 2017, 35(1): 39 DOI: 10.3969/j.issn.1001-3784.2017.01.007

    Guo Y, Li Z Y, Li Y. Preparation of η phase powder and the effect of sintering process on the plate-like WC grain. Powder Metall Technol, 2017, 35(1): 39 DOI: 10.3969/j.issn.1001-3784.2017.01.007
  • Related Articles

    [1]YUAN Zhenyu, CHANG Cheng, QI Huiying, XIAO Haibo, YAN Xingchen. Effects of micro-TiC particles on microstructure and mechanical properties of selective laser melting Inconel 625 alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 94-101. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070005
    [2]GAO Jiaojiao, PING Ping, HU Shiheng, SONG Jinpeng. Effect of sintering temperature on microstructure and mechanical properties of Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics[J]. Powder Metallurgy Technology, 2024, 42(2): 115-121. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040006
    [3]GAO Jiaojiao, PING Ping, LIU Jiabao, SONG Jinpeng. Effect of Re content on microstructure and mechanical properties of TiCN–WC–HfN ceramics[J]. Powder Metallurgy Technology, 2024, 42(1): 53-58. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040001
    [4]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [5]LIU Xiao-min, GAO Hong-liang, YANG Jing-ran, FU Zheng-rong, LI Xing-fu, LI Cong, YANG Yi, LIU Huan, ZHU Xin-kun. Microstructure and mechanical properties of pure titanium prepared by powder metallurgy combined with hot extrusion and rotary swagin[J]. Powder Metallurgy Technology, 2022, 40(3): 239-244. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050015
    [6]LI Xing-yu, ZHANG Lin, QIN Ming-li, WEI Zi-chen, QUE Zhong-you, QU Xuan-hui. Effect of jet milling processing on microstructure and mechanical properties of the sintered tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(3): 251-257. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030003
    [7]SONG Jin-peng, YU Cheng-gong, GAO Jiao-jiao, LÜ Ming. Effect of WC content on the microstructure and mechanical properties of TiCN-HfN cermet tool materials[J]. Powder Metallurgy Technology, 2020, 38(4): 243-248. DOI: 10.19591/j.cnki.cn11-1974/tf.2020030004
    [8]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
    [9]XIE Jun-cai, SONG Jin-peng, GAO Jiao-jiao, CAO Lei. Effects of HfN content on microstructure and mechanical properties of ZrB2-HfN ceramic materials[J]. Powder Metallurgy Technology, 2019, 37(6): 416-421. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.06.003
    [10]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
  • Cited by

    Periodical cited type(3)

    1. 段继平,唐湘林,盛俊英,彭子超,王旭青,邹金文. 热挤压态FGH95合金热变形特性. 粉末冶金技术. 2024(01): 36-44 . 本站查看
    2. 谷树超,王松,李俊. 基于失效分析的给水泵泵轴显微组织和力学性能对比研究. 电力科技与环保. 2021(04): 38-46 .
    3. 刘健,叶飞,王旭青,彭子超,罗学军. 粉末高温合金Udimet720Liγ′强化相析出行为. 粉末冶金技术. 2021(06): 499-504+525 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (358) PDF downloads (104) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return