AdvancedSearch
ZHANG Xiao-hong, YU Huan, HU Lian-xi. Fabrication and mechanical properties of high-strength AZ61Mg‒18%Ti composites[J]. Powder Metallurgy Technology, 2021, 39(6): 532-536. DOI: 10.19591/j.cnki.cn11-1974/tf.2021050005
Citation: ZHANG Xiao-hong, YU Huan, HU Lian-xi. Fabrication and mechanical properties of high-strength AZ61Mg‒18%Ti composites[J]. Powder Metallurgy Technology, 2021, 39(6): 532-536. DOI: 10.19591/j.cnki.cn11-1974/tf.2021050005

Fabrication and mechanical properties of high-strength AZ61Mg‒18%Ti composites

More Information
  • Corresponding author:

    HU Lian-xi, E-mail: hulx@hit.edu.cn

  • Received Date: May 20, 2021
  • Available Online: July 14, 2021
  • The AZ61Mg‒18%Ti (mass fraction) composites were prepared by mechanical milling, vacuum hot pressing, and hot extrusion. The microstructure, room-temperature mechanical properties, and the corresponding strengthening mechanism were studied. The results show that, the average grain size of the magnesium matrix is about 180 nm, the Ti particles and the nano-sized Ti3Al phases are dispersive distribution in the magnesium matrix, and the average grain sizes of Ti particles and Ti3Al phases are 265 nm and 10 nm, respectively. The ultrafine-grained AZ61Mg‒18%Ti composites show the excellent room-temperature mechanical properties, the room-temperature yield strength, the compressive strength, and the fracture strain are 606 MPa, 698 MPa, and 12%, respectively.
  • [1]
    Wan Y C, Tang B, Gao Y H, et al. Bulk nanocrystalline high-strength magnesium alloys prepared via rotary swaging. Acta Mater, 2020, 200: 274 DOI: 10.1016/j.actamat.2020.09.024
    [2]
    Chen L Y, Xu J Q, Choi H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature, 2015, 528(7583): 539 DOI: 10.1038/nature16445
    [3]
    Pan H C, Qin G W, Huang Y M, et al. Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength. Acta Mater, 2018, 149: 350 DOI: 10.1016/j.actamat.2018.03.002
    [4]
    Goh C S, Wei J, Lee L C, et al. Properties and deformation behaviour of Mg‒Y2O3 nanocomposites. Acta Mater, 2007, 55(15): 5115 DOI: 10.1016/j.actamat.2007.05.032
    [5]
    Suh B C, Kim J H, Bae J H, et al. Effect of Sn addition on the microstructure and deformation behavior of Mg‒3Al alloy. Acta Mater, 2017, 124: 268 DOI: 10.1016/j.actamat.2016.11.020
    [6]
    Wu Z X, Ahmad R, Yin B, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys. Science, 2018, 359(6374): 447 DOI: 10.1126/science.aap8716
    [7]
    任峰岩, 许磊, 历长云, 等. 粉末冶金法制备颗粒增强镁基复合材料的研究进展. 粉末冶金技术, 2020, 38(1): 66

    Ren F Y, Xu L, Li C Y, et al. Research progress in the preparation of particle-reinforced magnesium matrix composites by powder metallurgy. Powder Metall Technol, 2020, 38(1): 66
    [8]
    丁文江. 镁合金科学与技术. 北京: 科学出版社, 2007

    Ding W J. Magnesium Alloy Science and Technology. Beijing: Science Press, 2007
    [9]
    Wang Y, Choo H. Influence of texture on Hall-Petch relationships in an Mg alloy. Acta Mater, 2014, 81: 83 DOI: 10.1016/j.actamat.2014.08.023
    [10]
    Sun W T, Qiao X G, Zheng M Y, et al. Altered ageing behaviour of a nanostructured Mg‒8.2Gd‒3.8Y‒1.0Zn‒0.4Zr alloy processed by high pressure torsion. Acta Mater, 2018, 151: 260
    [11]
    Yu H H, Li C Z, Xin Y C, et al. The mechanism for the high dependence of the Hall-Petch slope for twinning/slip on texture in Mg alloys. Acta Mater, 2017, 128: 313 DOI: 10.1016/j.actamat.2017.02.044
    [12]
    王辛. 粉末冶金超细晶AZ31镁合金材料制备与力学性能研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2013

    Wang X. Research on Mechanical Properties of Ultra-Fine Grain AZ31 Magnesium Alloy Prepared by Powder Metallurgy [Dissertation]. Harbin: Harbin Institute of Technology, 2013
    [13]
    Yu H, Sun Y, Wan Z P, et al. Nanocrystalline Ti/AZ61 magnesium matrix composite: Evolution of microstructure and mechanical property during annealing treatment. J Alloys Compd, 2018, 741: 231 DOI: 10.1016/j.jallcom.2018.01.136
    [14]
    Sun X F, Wang C J, Deng K K, et al. High strength SiCp/AZ91 composite assisted by dynamic precipitated Mg17Al12 phase. J Alloys Compd, 2018, 732: 328 DOI: 10.1016/j.jallcom.2017.10.164
    [15]
    Homma T, Kunito N, Kamado S. Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scr Mater, 2009, 61(6): 644 DOI: 10.1016/j.scriptamat.2009.06.003
  • Related Articles

    [1]REN Xueting, WANG Guangda, ZHOU Wuping, XIONG Ning. Effect of annealing temperature on La2O3 strengthened Mo–Re alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 71-78. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030007
    [2]LIU Xiao-min, GAO Hong-liang, YANG Jing-ran, FU Zheng-rong, LI Xing-fu, LI Cong, YANG Yi, LIU Huan, ZHU Xin-kun. Microstructure and mechanical properties of pure titanium prepared by powder metallurgy combined with hot extrusion and rotary swagin[J]. Powder Metallurgy Technology, 2022, 40(3): 239-244. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050015
    [3]Effects of extrusion ratio and extrusion temperature on the microstructure and mechanical properties of 6063 aluminum alloy prepared by hot extrusion consolidation of chips[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2022030011
    [4]DUAN Lin-lin, FENG Peng-fa, DANG Xiao-ming. Effect of Y2O3–CeO2 two-phase dispersion strengthening on the grain size and tensile properties of Mo alloys[J]. Powder Metallurgy Technology, 2021, 39(3): 223-228. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030006
    [5]WEI Zi-chen, ZHANG Lin, QIN Ming-li, LI Xing-yu, QUE Zhong-you, QU Xuan-hui. Effect of powder size on microstructure and mechanical properties of rhenium[J]. Powder Metallurgy Technology, 2021, 39(3): 196-202. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030014
    [6]ZHANG Xiao-hong, SHEN Jing-yuan, SUN Yu, HU Lian-xi. Study on the microstructure and properties of dispersion-reinforced Cu-based composites by ultrafine WC and nano-sized Al2O3 particles via extrusion densification[J]. Powder Metallurgy Technology, 2019, 37(6): 422-427. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.06.004
    [7]WEN Yi-bo, SHANGGUAN Bao, ZHANG Yong-zhen, SONG Chen-fei, YANG Zheng-hai. Effects of carbonfiber content by mass on current-carrying fiction and wear properties of Al2O3 dispersion strengthened copper composites[J]. Powder Metallurgy Technology, 2018, 36(3): 177-181. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.003
    [8]Guo Yang, Liu Zuming, Su Pengfei, Ma Mengmei, Duan Ranxi, Wang Shuai. Microstructure and mechanical properties of nitride dispersion strengthened ferrite-based alloy[J]. Powder Metallurgy Technology, 2016, 34(5): 361-367. DOI: 10.3969/j.issn.1001-3784.2016.05.008
    [9]Tang Lin, Luo Fenghua, Xu Ran, Huang Xiaoqin. Study on mechanical properties of Al2O3 dispersion strengthened copper alloy[J]. Powder Metallurgy Technology, 2013, 31(6): 418-423. DOI: 10.3969/j.issn.1001-3784.2013.06.004
    [10]Xiao Guangzhi, Wang Jianhua, Zhou Wei, Xiao Pingan. Effect of ball milling time on microstructure and properties of 6% alumina dispersion strengthened copper matrix composite[J]. Powder Metallurgy Technology, 2010, 28(5): 370-375.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article Metrics

    Article views (440) PDF downloads (23) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return