AdvancedSearch
WANG Yong-hui, HU Qiang, ZHANG Jin-hui, LIU Ying-jie, SHENG Yan-wei, ZHAO Xin-ming. Influencing factors on the tensile properties of selective laser melting 3D printing AlSi10Mg[J]. Powder Metallurgy Technology, 2022, 40(2): 152-158. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120016
Citation: WANG Yong-hui, HU Qiang, ZHANG Jin-hui, LIU Ying-jie, SHENG Yan-wei, ZHAO Xin-ming. Influencing factors on the tensile properties of selective laser melting 3D printing AlSi10Mg[J]. Powder Metallurgy Technology, 2022, 40(2): 152-158. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120016

Influencing factors on the tensile properties of selective laser melting 3D printing AlSi10Mg

More Information
  • Corresponding author:

    ZHAO Xin-ming, E-mail: xinming_zhao@126.com

  • Received Date: December 18, 2021
  • Accepted Date: March 07, 2022
  • Available Online: March 07, 2022
  • The tensile properties of the selective laser melting (SLM) 3D printing AlSi10Mg samples were investigated which were prepared by the different forming processes, raw powders, and heat treatments. The influencing factors on the tensile properties of SLM 3D printing AlSi10Mg samples were discussed in this paper, including 3D printing forming process, powder physical properties, and heat treatment system. The results show that, the laser energy density affects the relative density of the AlSi10Mg samples, which influences the tensile properties deeply. The holes are mostly distributed at the junction and on the bottom of molten pool when the laser energy density is low, and the over high energy density leads to the distribution of pores inside the molten pool. The AlSi10Mg samples prepared using the powders with high sphericity can achieve the better tensile properties due to the good physical properties and low hollow powder ratio. The Si phase coarsens gradually as the annealing temperature increases from 270 ℃ to 300 ℃, leading to the decrease of strength and the increase of elongation gradually.
  • [1]
    Aktürk M, Boy M, Gupta M K, et al. Numerical and experimental investigations of built orientation dependent Johnson-Cook model for selective laser melting manufactured AlSi10Mg. J Mater Res Technol, 2021, 15: 6244 DOI: 10.1016/j.jmrt.2021.11.062
    [2]
    Javidani M, Arreguin-Zavala J, Danovitch J, et al. Additive manufacturing of AlSi10Mg alloy using direct energy deposition: microstructure and hardness characterization. J Therm Spray Technol, 2017, 26: 587 DOI: 10.1007/s11666-016-0495-4
    [3]
    李晓丹, 朱庆丰, 孔淑萍, 等. 3D打印AlSi10Mg合金组织性能研究. 材料科学与工艺, 2019, 27(2): 16 DOI: 10.11951/j.issn.1005-0299.20180138

    Li X D, Zhu Q F, Kong S P, et al. Study on the structure and properties of the AlSi10Mg samples produced by 3D printing. Mater Sci Technol, 2019, 27(2): 16 DOI: 10.11951/j.issn.1005-0299.20180138
    [4]
    Arfan M, Altaf A, Abdus S, et al. Surface quality improvement by parameters analysis, optimization and heat treatment of AlSi10Mg parts manufactured by SLM additive manufacturing. Int J Lightweight Mater Manuf, 2019, 2(4): 288
    [5]
    Yu T, Hyer H, Sohn Y, et al. Structure-property relationship in high strength and lightweight AlSi10Mg microlattices fabricated by selective laser melting. Mater Des, 2019, 182: 108062 DOI: 10.1016/j.matdes.2019.108062
    [6]
    吴灵芝, 温耀杰, 张百成, 等. 选区激光熔化铝合金制备研究现状. 粉末冶金技术, 2021, 39(6): 549

    Wu L Z, Wen Y J, Zhang B C, et al. Research status of selective laser melting aluminum alloys. Powder Metall Technol, 2021, 39(6): 549
    [7]
    赵晓明, 齐元昊, 于全成, 等. AlSi10Mg铝合金3D打印组织与性能研究. 铸造技术, 2016, 37(11): 2402

    Zhao X M, Qi Y H, Yu Q C, et al. Study on microstructure and mechanical properties of AlSi10Mg alloy produced by 3D printing. Foundy Technol, 2016, 37(11): 2402
    [8]
    闫泰起, 陈冰清, 唐鹏钧, 等. 铺粉层厚对选区激光熔化成形AlSi10Mg合金质量及效率的影响. 中国激光, 2021, 48(10): 52

    Yan T Q, Chen B Q, Tang P J, et al. Effect of powder layer thickness on quality and efficiency of AlSi10Mg alloy formed by selective laser melting. Chin J Lasers, 2021, 48(10): 52
    [9]
    梁恩泉, 代宇, 白静, 等. 退火态激光选区熔化成形AlSi10Mg合金组织与性能. 材料工程, http://kns.cnki.net/kcms/detail/11.1800.TB.20210804.1624.002.html

    Liang E Q, Dai Y, Bai J, et al. Microstructure and tensile properties of annealing heat treated AlSi10Mg alloy fabricated by selective laser melting. J Mater Eng, http://kns.cnki.net/kcms/detail/11.1800.TB.20210804.1624.002.html
    [10]
    杨孝梅, 蹇海根, 张唯, 等. 选区激光熔化AlSi10Mg粉末性能研究. 新技术新工艺, 2021(7): 57

    Yang X M, Jian H G, Zhang W, et al. Research on characterisitics of AlSi10Mg aluminum powder in the selective laser melting. New Technol New Process, 2021(7): 57
    [11]
    刘少伟, 段望春, 董兵斌. PREP工艺参数对3D打印用AlSi10Mg铝合金粉末性能的影响. 有色金属工程, 2019, 9(9): 45

    Liu S W, Duan W C, Dong B B. Effect of PREP process parameters on properties of AlSi10Mg aluminum alloy powder for 3D printing. Nonferrous Met Eng, 2019, 9(9): 45
    [12]
    Simchi A. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features. Mater Sci Eng A, 2006, 428(1-2): 148 DOI: 10.1016/j.msea.2006.04.117
    [13]
    倪晓晴, 孔德成, 温莹, 等. 3D打印金属材料中孔隙率的影响因素和改善方法. 粉末冶金技术, 2019, 37(3): 163

    Ni X Q, Kong D C, Wen Y, et al. Influence factors and improvement methods on the porosity of 3D printing metal materials. Powder Metall Technol, 2019, 37(3): 163
    [14]
    王迪, 欧远辉, 窦文豪, 等. 粉末床激光熔融过程中飞溅行为的研究进展. 中国激光, 2020, 47(9): 1

    Wang D, Ou Y H, Dou W H, et al. Research progress on spatter behavior in laser powder bed fusion. Chin J Lasers, 2020, 47(9): 1
    [15]
    李响, 曾克里, 何鹏江, 等. 紧耦合气雾化参数对3D打印用金属粉末性能的影响. 粉末冶金技术, 2021, 39(2): 172

    Li X, Zeng K L, He P J, et al. Effect of tightly coupled gas atomization parameters on the properties of metal powders used for 3D printing. Powder Metall Technol, 2021, 39(2): 172
    [16]
    冯秋娜. 激光熔化沉积成形AlSi10Mg合金的工艺与组织性能研究[学位论文]. 南京: 南京航空航天大学, 2017

    Feng Q N. Research on Process, Microstructures and Properties of AlSi10Mg Alloy Prepared by Laser Melting Deposition [Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017
  • Related Articles

    [1]YUAN Zhenyu, CHANG Cheng, QI Huiying, XIAO Haibo, YAN Xingchen. Effects of micro-TiC particles on microstructure and mechanical properties of selective laser melting Inconel 625 alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 94-101. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070005
    [2]GAO Jiaojiao, PING Ping, HU Shiheng, SONG Jinpeng. Effect of sintering temperature on microstructure and mechanical properties of Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics[J]. Powder Metallurgy Technology, 2024, 42(2): 115-121. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040006
    [3]GAO Jiaojiao, PING Ping, LIU Jiabao, SONG Jinpeng. Effect of Re content on microstructure and mechanical properties of TiCN–WC–HfN ceramics[J]. Powder Metallurgy Technology, 2024, 42(1): 53-58. DOI: 10.19591/j.cnki.cn11-1974/tf.2023040001
    [4]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [5]LIU Xiao-min, GAO Hong-liang, YANG Jing-ran, FU Zheng-rong, LI Xing-fu, LI Cong, YANG Yi, LIU Huan, ZHU Xin-kun. Microstructure and mechanical properties of pure titanium prepared by powder metallurgy combined with hot extrusion and rotary swagin[J]. Powder Metallurgy Technology, 2022, 40(3): 239-244. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050015
    [6]LI Xing-yu, ZHANG Lin, QIN Ming-li, WEI Zi-chen, QUE Zhong-you, QU Xuan-hui. Effect of jet milling processing on microstructure and mechanical properties of the sintered tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(3): 251-257. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030003
    [7]SONG Jin-peng, YU Cheng-gong, GAO Jiao-jiao, LÜ Ming. Effect of WC content on the microstructure and mechanical properties of TiCN-HfN cermet tool materials[J]. Powder Metallurgy Technology, 2020, 38(4): 243-248. DOI: 10.19591/j.cnki.cn11-1974/tf.2020030004
    [8]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
    [9]XIE Jun-cai, SONG Jin-peng, GAO Jiao-jiao, CAO Lei. Effects of HfN content on microstructure and mechanical properties of ZrB2-HfN ceramic materials[J]. Powder Metallurgy Technology, 2019, 37(6): 416-421. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.06.003
    [10]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
  • Cited by

    Periodical cited type(3)

    1. 段继平,唐湘林,盛俊英,彭子超,王旭青,邹金文. 热挤压态FGH95合金热变形特性. 粉末冶金技术. 2024(01): 36-44 . 本站查看
    2. 谷树超,王松,李俊. 基于失效分析的给水泵泵轴显微组织和力学性能对比研究. 电力科技与环保. 2021(04): 38-46 .
    3. 刘健,叶飞,王旭青,彭子超,罗学军. 粉末高温合金Udimet720Liγ′强化相析出行为. 粉末冶金技术. 2021(06): 499-504+525 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return