AdvancedSearch
ZHANG Mai, LIANG Jiamiao, LIU Mohan, LI Dong, BAIXIAO Chengti, XU Kai, WANG Jun. Effects of powder size and sintering temperature on microstructure and properties of porous K418 superalloys[J]. Powder Metallurgy Technology, 2023, 41(5): 442-448. DOI: 10.19591/j.cnki.cn11-1974/tf.2022040002
Citation: ZHANG Mai, LIANG Jiamiao, LIU Mohan, LI Dong, BAIXIAO Chengti, XU Kai, WANG Jun. Effects of powder size and sintering temperature on microstructure and properties of porous K418 superalloys[J]. Powder Metallurgy Technology, 2023, 41(5): 442-448. DOI: 10.19591/j.cnki.cn11-1974/tf.2022040002

Effects of powder size and sintering temperature on microstructure and properties of porous K418 superalloys

More Information
  • Corresponding author:

    LIANG Jiamiao, E-mail: jmliang@sjtu.edu.cn

  • Received Date: July 25, 2022
  • Accepted Date: July 25, 2022
  • Available Online: August 06, 2022
  • The porous superalloy materials were prepared by loose packing sintering using the atomized K418 nickel-based superalloy spherical powders as the raw materials. The microstructure, permeability, capillarity, and compressive strength of the sintered porous material samples were analyzed, and the effects of sintering temperature and original powder particle size on the microstructure and properties of the porous K418 superalloys were investigated. The results show that, the average pore size and porosity decrease with the increase of sintering temperature. At the same sintering temperature, the average pore size and porosity of the sintered samples increase with the increase of the original powder particle size. At the sintering temperature of 1230 ℃ and the powder particle size of 53~150 μm, the comprehensive performance of the porous material samples is the best, the permeability is 13.69×10−15 m2, the capillary pressure is 22.1 kPa, and compressive strength is 86 MPa.

  • [1]
    Andrews J. Heat Pipe Technology. New York: Pergamon Press, 1997
    [2]
    郭朝邦, 李文杰. 高超声速飞行器结构材料与热防护系统. 飞航导弹, 2010(4): 88 DOI: 10.16338/j.issn.1009-1319.2010.04.005

    Guo B J, Li W J. Structural materials and thermal protection system of hypersonic vehicle. Process Mater, 2010(4): 88 DOI: 10.16338/j.issn.1009-1319.2010.04.005
    [3]
    彭稳根. 高超声速飞行器金属结构热管热防护机制理论与模拟研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2011

    Peng W G. Theoretical and Simulation Study on Thermal Protection Mechanism of Metal Structural Heat Pipe for Hypersonic Vehicle [Dissertation]. Harbin: Harbin Institute of Technology, 2011
    [4]
    余培良, 尹凤霞. 热管及热管技术中的金属多孔材料. 粉末冶金技术, 2011, 29(5): 380 DOI: 10.19591/j.cnki.cn11-1974/tf.2011.05.011

    Yu P L, Yin F X. Heat pipes and metal porous materials in heat pipes technology. Powder Metall Technol, 2011, 29(5): 380 DOI: 10.19591/j.cnki.cn11-1974/tf.2011.05.011
    [5]
    朱明汉, 白鹏飞, 胡艳鑫, 等. 烧结多孔槽道吸液芯超薄平板热管的传热性能. 化工学报, 2019, 70(4): 1349

    Zhu M H, Bai P F, Hu Y X, et al. Heat transfer performance of ultra-thin plate heat pipe with sintered porous channels structures wick. CIESC J, 2019, 70(4): 1349
    [6]
    关文岚. 铁基多孔材料的制备及其在水体中的应用研究[学位论文]. 青岛: 青岛科技大学, 2020

    Guan W L. Preparation of Iron-Based Porous Materials and Its Application in Water [Dissertation]. Qingdao: Qingdao University of Science and Technology, 2020
    [7]
    Ding C S, Soni G, Bozorgi P, et al. A flat heat pipe architecture based on nanostructured titania. J Microelectromech System, 2010, 19(4): 878 DOI: 10.1109/JMEMS.2010.2051019
    [8]
    Jafari D, Wits W W, Geurts B J. Metal 3D-printed wick structures for heat pipe application: Capillary performance analysis. Appl Therm Eng, 2018, 143: 403 DOI: 10.1016/j.applthermaleng.2018.07.111
    [9]
    王德志, 王小鹰, 周盼, 等. 烧结工艺对环路热管用Ni多孔吸液芯性能的影响. 粉末冶金材料科学与工程, 2014, 19(5): 687

    Wang D Z, Wang X Y, Zhou P, et al. Effect of sintering process on properties of Ni porous capillary wicks for loop heat pipe. Mater Sci Eng Powder Metall, 2014, 19(5): 687
    [10]
    黎强, 甘雪萍, 李志友, 等. 多孔镍毛细芯的制备及其力学性能. 粉末冶金材料科学与工程, 2018, 23(4): 361 DOI: 10.3969/j.issn.1673-0224.2018.04.004

    Li Q, Gan X P, Li Z Y, et al. Fabrication and mechanical properties of porous Ni wicks. Mater Sci Eng Powder Metall, 2018, 23(4): 361 DOI: 10.3969/j.issn.1673-0224.2018.04.004
    [11]
    刘发信, 袁文明, 汤鑫. K418合金的组织对低周疲劳性能的影响. 航空材料学报, 1996, 16(2): 31

    Liu F X, Yuan W M, Tang X. Influences of structures on low cycle fatigue life of K418 alloy. J Aeron Mater, 1996, 16(2): 31
    [12]
    刘高群. 铸造镍基高温合金K418切削性能试验研究[学位论文]. 南京: 南京理工大学, 2006

    Liu G Q. Experimental Study on Cutting Properties of K418 Nickel-Based Superalloy [Dissertation]. Nanjing: Nanjing University of Technology, 2006
    [13]
    Chi S V. Heat Pipe Theory and Practice: A Sourcebook. New York: Hemisphere Publishing Corp, 1976
    [14]
    Mishra D K, Saravanan T T, Khanra G P, et al. Studies on the processing of nickel base porous wicks for capillary pumped loop for thermal management of spacecrafts. Adv Powder Technol, 2010, 21(6): 658 DOI: 10.1016/j.apt.2010.07.011
  • Related Articles

    [1]TANG Xuezhi, WANG Zhijun, ZHANG Xuepeng, XU Yongjie. Dynamic compressive behavior of PTFE/Cu composite materials[J]. Powder Metallurgy Technology, 2024, 42(2): 153-158, 164. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080008
    [2]LI Yuhua, HE Yuxin, ZHANG Qian, ZHAO Rong, WANG Haojie, CHU Jinghui, NIU Libin. 2D and 3D finite element comparative analysis of compressive properties of porous titanium[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024030007
    [3]The influencing factors of static pressure strength of diamond micro powder deposits and its influence on the mechanical properties of polycrystalline diamond composite teeth[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024050027
    [4]WANG Jianzhong, AO Qingbo, MA Jun, LI Aijun. Preparation and compressive properties of Ti alloy fiber porous materials[J]. Powder Metallurgy Technology, 2023, 41(2): 125-130. DOI: 10.19591/j.cnki.cn11-1974/tf.2021080005
    [5]LI Yu, SHEN Wei, ZHAO Peng, PU Yu-ping. Finite element analysis for the yield strength of copper foam[J]. Powder Metallurgy Technology, 2017, 35(1): 3-9. DOI: 10.3969/j.issn.1001-3784.2017.01.001
    [6]Wang Zhanguang, Cai Ping, Li Shuqin. Mechanical properties and energy absorption capability of closed-cell Al foam under uniaxial compression[J]. Powder Metallurgy Technology, 2012, 30(4): 274-278,306. DOI: 10.3969/j.issn.1001-3784.2012.04.006
    [7]Wang Jianyong, Tang Huiping, Zhu Jilei, Qiao Jichao, Zang Chunyong, Ao Qingbo, Li Cheng. Effect of porosity on compressive properties of porous sintered stainless steel fiber media[J]. Powder Metallurgy Technology, 2009, 27(5): 323-326.
    [8]Li Dongli, Xia Tiandong, He Xiangning. EFFECT OF Na2B4O7 ON COMPRESSION-SHEARING STRENGTH OF CERAMIC-LINED PIPES PRODUCED BY CENTRIFUGAL-SHS PROCESS[J]. Powder Metallurgy Technology, 2000, 18(4): 257-260.
    [9]Xu Chonghai, Ai Xing, Huang Chuanzhen. Analyses of Statistical Characteristics of the Flexural Strength of an Advanced Ceramic Tool Material[J]. Powder Metallurgy Technology, 1997, 15(1): 29-32.
    [10]Zhang Ji, Li Shikui. MATHEMATICAL ANALYSIS ON TRANSVERSE RUPTURE STRENGTH OF YG15 HARDMETALS[J]. Powder Metallurgy Technology, 1993, 11(1): 15-18.
  • Cited by

    Periodical cited type(1)

    1. 齐晓红,梁晓康,肖铮,魏征宇,刘新炜,刘壮壮. 激光增材制造Inconel718骨架增强多孔结构的力学行为(特邀). 红外与激光工程. 2024(11): 40-51 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (937) PDF downloads (59) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return