AdvancedSearch
WU Ling-zhi, WEN Yao-jie, ZHANG Bai-cheng, YIN Hai-qing, QU Xuan-hui. Research status of selective laser melting aluminum alloys[J]. Powder Metallurgy Technology, 2021, 39(6): 549-562. DOI: 10.19591/j.cnki.cn11-1974/tf.2020040004
Citation: WU Ling-zhi, WEN Yao-jie, ZHANG Bai-cheng, YIN Hai-qing, QU Xuan-hui. Research status of selective laser melting aluminum alloys[J]. Powder Metallurgy Technology, 2021, 39(6): 549-562. DOI: 10.19591/j.cnki.cn11-1974/tf.2020040004

Research status of selective laser melting aluminum alloys

More Information
  • Corresponding author:

    ZHANG Bai-cheng, E-mail: zhangbc@ustb.edu.cn (ZHANG B C)

    YIN Hai-qing, hqyin@ustb.edu.cn (YIN H Q)

  • Received Date: April 11, 2020
  • Available Online: July 27, 2021
  • Selective laser melting (SLM) technology has been widely applied in the industry due to its customization, short manufacturing cycle, and high precision. The research progress of aluminum alloys and composites prepared by SLM was systematically reviewed. The advantage of SLM aluminum alloys was introduced though the SLM characterization. The research of SLM casting Al‒Si series alloys was discussed, and the microstructure, phase composition, and mechanical properties was revolved, combining with the scanning strategy and laser parameter optimization. Meanwhile, the investigation of SLM nano/micro reinforced aluminum alloys was also present, the particle reinforcement mechanism on the microstructure, relative density, wettability, and mechanical properties was analyzed. On the other hand, the research progress of new high strength aluminum alloys prepared by SLM was also discussed, the strengthening mechanism, relative density, and mechanical properties were emphasized. Finally, the development trend of SLM aluminum alloys and the current problems were prospected.
  • [1]
    戴圣龙, 张坤, 杨守杰, 等. 先进航空铝合金材料与应用. 1版. 北京: 国防工业出版社, 2012.

    Dai S L, Zhang K, Yang S J, et al. Advanced Aviation Aluminum Alloy Materials and Applications. 1st Ed. Beijing: National Defense Industry Press, 2012.
    [2]
    郜庆伟, 赵健, 舒凤远, 等. 铝合金增材制造技术研究进展. 材料工程, 2019, 47(11): 32 DOI: 10.11868/j.issn.1001-4381.2019.000084

    Gao Q W, Zhao J, Shu F Y, et al. Research progress in aluminum alloy additive manufacturing. J Mater Eng, 2019, 47(11): 32 DOI: 10.11868/j.issn.1001-4381.2019.000084
    [3]
    杨守杰, 戴圣龙. 航空铝合金的发展回顾与展望. 材料导报, 2005(2): 76 DOI: 10.3321/j.issn:1005-023X.2005.02.023

    Yang S J, Dai S L. A glimpse at the development and application of aluminum alloys in aviation industry. Mater Rev, 2005(2): 76 DOI: 10.3321/j.issn:1005-023X.2005.02.023
    [4]
    李礼, 戴煜. 激光选区熔化增材制造专用球形金属粉末制备技术现状及对比. 新材料产业, 2017(8): 54 DOI: 10.3969/j.issn.1008-892X.2017.08.014

    Li L, Dai Y. Laser selective melt additive manufacturing spherical powder preparation technology status and comparison. Adv Mater Ind, 2017(8): 54 DOI: 10.3969/j.issn.1008-892X.2017.08.014
    [5]
    朱海红, 廖海龙. 高强铝合金的激光选区熔化成形研究现状. 激光与光电子学进展, 2018, 55(1): 22

    Zhu H H, Liao H L. Research status of selective laser melting of high strength aluminum alloy. Laser Optoelectron Prog, 2018, 55(1): 22
    [6]
    李俐群, 曲劲宇, 王宪. 激光熔化沉积AlSi10Mg成形特性及力学性能. 表面技术, 2019, 48(6): 332

    Li L Q, Qu J Y, Wang X. Formability and mechanical property of laser metal deposited AlSi10Mg alloy. Surf Technol, 2019, 48(6): 332
    [7]
    黄卫星, 汪涛, 袁揭, 等. 粉末区熔法制备石墨烯/AlSi12复合材料的组织和性能. 金属热处理, 2019, 44(12): 38

    Huang W X, Wang T, Yuan J, et al. Microstructure and properties of graphene/AlSi12 composites prepared by powder zone melting method. Heat Treat Met, 2019, 44(12): 38
    [8]
    闫洪, 张辉, 杨祖贵. 铸造AlSi7MgLa铝合金的金相组织和力学性能研究. 新技术新工艺, 2016(9): 61 DOI: 10.3969/j.issn.1003-5311.2016.09.019

    Yan H, Zhang H, Yang Z G. Study on microstructure and mechanical properties of cast AlSi7MgLa aluminum alloy. New Technol Process, 2016(9): 61 DOI: 10.3969/j.issn.1003-5311.2016.09.019
    [9]
    汪闵, 赵玉涛, 陶然, 等. Sr对AlSi9Cu3合金组织与力学性能的影响. 铸造技术, 2018, 39(6): 1153

    Wang M, Zhao Y T, Tao R, et al. Effect of Sr on microstructure and mechanical properties of AlSi9Cu3 alloy. Foundry Technol, 2018, 39(6): 1153
    [10]
    Awd M, Tenkamp J, Hirtler M, et al. Comparison of microstructure and mechanical properties of scalmalloy® produced by selective laser melting and laser metal deposition. Materials, 2017, 11(1): 17 DOI: 10.3390/ma11010017
    [11]
    张光曦, 刘世锋, 杨鑫, 等. 增材制造技术制备生物植入材料的研究进展. 粉末冶金技术, 2019, 37(4): 312

    Zhang G X, Liu S F, Yang X, et al. Research progress on preparation of biological implant materials by additive manufacturing. Powder Metall Technol, 2019, 37(4): 312
    [12]
    管吉, 杨树欣, 管叶, 等. 3D打印技术在医疗领域的研究进展. 中国医疗设备, 2014, 29(4): 71 DOI: 10.3969/j.issn.1674-1633.2014.04.024

    Guan J, Yang S X, Guan Y, et al. Research progress of 3D printing technology in medical domain. China Med Devices, 2014, 29(4): 71 DOI: 10.3969/j.issn.1674-1633.2014.04.024
    [13]
    Mertens A, Delahaye J, Dedry O, et al. Microstructure and properties of SLM AlSi10Mg: Understanding the influence of the local thermal history. Procedia Manuf, 2020, 47: 1089 DOI: 10.1016/j.promfg.2020.04.121
    [14]
    Mcdonald S D, Nogita K, Dahle A K. Eutectic nucleation in Al‒Si alloys. Acta Mater, 2004, 52(14): 4273 DOI: 10.1016/j.actamat.2004.05.043
    [15]
    Gremaud M, Allen D R, Rappaz M, et al. The development of nucleation controlled microstructures during laser treatment of Al single bond Si alloys. Acta Mater, 1996, 44(7): 2669 DOI: 10.1016/1359-6454(95)00393-2
    [16]
    Pei Y T, Hosson J Th M D. Functionally graded materials produced by laser cladding. Acta Mater, 2000, 48(10): 2617 DOI: 10.1016/S1359-6454(00)00065-3
    [17]
    Feufel H, Gödecke T, Lukas H L, et al. Investigation of the Al‒Mg‒Si system by experiments and thermodynamic caculations. J Alloys Compd, 1997, 247(1-2): 31 DOI: 10.1016/S0925-8388(96)02655-2
    [18]
    Maskery I, Aboulkhair N T, Corfield M R, et al. Quantification and characterization of porosity in selectively laser melted Al‒Si10‒Mg using X-ray computed tomography. Mater Charact, 2016, 111: 193 DOI: 10.1016/j.matchar.2015.12.001
    [19]
    Read N, Wang W, Essa K, et al. Selective laser melting of AlSi10Mg alloy: Process optimization and mechanical properties development. Mater Des, 2015, 65: 417 DOI: 10.1016/j.matdes.2014.09.044
    [20]
    Dong Z C, Liu Y B, Zhang Q, et al. Microstructural heterogeneity of AlSi10Mg alloy lattice structures fabricated by selective laser melting: Phenomena and mechanism. J Alloys Compd, 2020, 833: 155071 DOI: 10.1016/j.jallcom.2020.155071
    [21]
    Suryawanshi J, Prashanth K G, Scudino S, et al. Simultaneous enhancements of strength and toughness in an Al−12Si alloy synthesized using selective laser melting. Acta Mater, 2016, 115: 285 DOI: 10.1016/j.actamat.2016.06.009
    [22]
    Chen B, Moon S K, Yao X, et al. Strength and strain hardening of a selective laser melted AlSi10Mg alloy. Scr Mater, 2017, 141: 45 DOI: 10.1016/j.scriptamat.2017.07.025
    [23]
    Lam L P, Zhang D Q, Liu Z H, et al. Phase analysis and microstructure characterisation of AlSi10Mg parts produced by selective laser melting. Virtual Phys Prototyp, 2015, 10(4): 207 DOI: 10.1080/17452759.2015.1110868
    [24]
    Prashanth K G, Scudino S, Klauss H J, et al. Microstructure and mechanical properties of Al‒12Si produced by selective laser melting: Effect of heat treatment. Mater Sci Eng A, 2014, 590: 153 DOI: 10.1016/j.msea.2013.10.023
    [25]
    钱德宇, 陈长军, 张敏, 等. 选区激光熔化成形多孔铝合金的显微组织及微观力学性能研究. 中国激光, 2016, 43(4): 66

    Qian D Y, Chen C J, Zhang M, et al. Study on microstructure and micro-mechanical properties of porous aluminum alloy fabricated by selective laser melting. Chin J Lasers, 2016, 43(4): 66
    [26]
    Kimura T, Nakamoto T. Microstructures and mechanical properties of A356(AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting. Mater Des, 2016, 89: 1294 DOI: 10.1016/j.matdes.2015.10.065
    [27]
    赵晓明, 齐元昊, 于全成, 等. AlSi10Mg铝合金3D打印组织与性能研究. 铸造技术, 2016, 37(11): 2402

    Zhao X M, Qi Y H, Yu Q C, et al. Study on microstructure and mechanical properties of AlSi10Mg alloy produced by 3D printing. Foundry Technol, 2016, 37(11): 2402
    [28]
    Buchbinder D, Schleifenbaum H, Heidrich S, et al. High power selective laser melting (HPSLM) of aluminium parts // Physics Procedia of the Sixth International WLT Conference on Lasers in Manufacturing. Munich, 2012: 271.
    [29]
    Rahman Rashida R A, Mallavarapu J, Palanisamy S, et al. A comparative study of flexural properties of additively manufactured aluminium latice structures. Mater Today Proc, 2017, 4(8): 8597 DOI: 10.1016/j.matpr.2017.07.207
    [30]
    Montero-Sistiaga M L, Mertens R, Vrancken B, et al. Changing the alloy composition of Al7075 for better processability by selective laser melting. J Mater Process Technol, 2016, 238: 437 DOI: 10.1016/j.jmatprotec.2016.08.003
    [31]
    Singh A, Ramakrishnan A, Baker D, et al. Laser metal deposition of nickel coated Al 7050 alloy. J Alloys Compd, 2017, 719: 151 DOI: 10.1016/j.jallcom.2017.05.171
    [32]
    Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys. Nature, 2017, 549(7672): 365 DOI: 10.1038/nature23894
    [33]
    Karg M C H, Ahuja B, Wiesenmayer S, et al. Effects of process conditions on the mechanical behavior of aluminium wrought alloy EN AW-2219(AlCu6Mn) additively manufactured by laser beam melting in powder bed. Micromachines, 2017, 8(1): 23 DOI: 10.3390/mi8010023
    [34]
    张虎, 聂小佳, 朱海红, 等. 激光选区熔化成形高强Al‒Cu‒Mg合金研究. 中国激光, 2016, 43(5): 84

    Zhang H, Nie X J, Zhu H H, et al. Study on high strength Al‒Cu‒Mg alloy fabricated by selective laser melting. Chin J Lasers, 2016, 43(5): 84
    [35]
    Nie X J, Zhang H, Zhu H H, et al. On the role of Zr content into Portevin-Le Chatelier (PLC) effect of selective laser melted high strength Al‒Cu‒Mg‒Mn alloy. Mater Lett, 2019, 248: 5 DOI: 10.1016/j.matlet.2019.03.112
    [36]
    Ahuja B, Karg M, Nagulin K Y, et al. Fabrication and characterization of high strength Al‒Cu alloys processed using laser beam melting in metal powder bed. Phys Procedia, 2014, 56: 135 DOI: 10.1016/j.phpro.2014.08.156
    [37]
    Zhang H, Zhu H H, Qi T, et al. Selective laser melting of high strength Al–Cu–Mg alloys: Processing, microstructure and mechanical properties. Mater Sci Eng A, 2016, 656: 47 DOI: 10.1016/j.msea.2015.12.101
    [38]
    魏娟娟, 米国发, 许磊, 等. 激光增材制造铝合金及其复合材料研究进展. 热加工工艺, 2019, 48(8): 27

    Wei J J, Mi G F, Xu L, et al. Research progress on laser additive manufacturing aluminum alloy and its composites. Hot Working Technol, 2019, 48(8): 27
    [39]
    Simchi A, Godlinski D. Effect of SiC particles on the laser sintering of Al‒7Si‒0.3Mg alloy. Scr Mater, 2008, 59(2): 199 DOI: 10.1016/j.scriptamat.2008.03.007
    [40]
    Chen R, Shi Y F, Xu Q Y, et al. Effect of cooling rate on solidification parameters and microstructure of Al‒7Si‒0.3Mg‒0.15Fe alloy. Trans Nonferrous Met Soc China, 2014, 24(6): 1645 DOI: 10.1016/S1003-6326(14)63236-2
    [41]
    骆冬智, 孙智富. 铝合金增材制造技术在军工领域的研究进展. 兵器装备工程学报, 2019, 40(8): 212 DOI: 10.11809/bqzbgcxb2019.08.042

    Luo D Z, Sun Z F. Recent developments on researches of military usage Al alloys via addictive manufacturing. J Ordn Equip Eng, 2019, 40(8): 212 DOI: 10.11809/bqzbgcxb2019.08.042
    [42]
    叶寒, 张坚强, 黄俊强, 等. 选区激光熔化WC/AlSi10Mg复合材料的微观组织和疲劳性能. 材料导报, 2019, 33(22): 3789 DOI: 10.11896/cldb.18090274

    Ye H, Zhang J Q, Huang J Q, et al. Microstructure and fatigue properties of selected laser-melted WC/AlSi10Mg composites. Mater Rev, 2019, 33(22): 3789 DOI: 10.11896/cldb.18090274
    [43]
    张天驰, 张明, 祁俊峰, 等. 3%SiC/AlSi10Mg复合材料SLM成形力学性能与组织分析. 新技术新工艺, 2018(7): 1

    Zhang T C, Zhang M, Qi J F, et al. Mechanical properties and structure analysis of SLM forming of 3%SiC/AlSi10Mg composite material. New Technol New Process, 2018(7): 1
    [44]
    Han Q, Setchi R, Evans S L. Synthesis and characterisation of advanced ball-milled Al‒Al2O3 nanocomposites for selective laser melting. Powder Technol, 2016, 297: 183 DOI: 10.1016/j.powtec.2016.04.015
    [45]
    Tan H, Hao D, Al-Hamdani K, et al. Direct metal deposition of TiB2/AlSi10Mg composites using satellited powders. Mater Lett, 2018, 214: 123 DOI: 10.1016/j.matlet.2017.11.121
    [46]
    Gu D, Wang H, Dai D, et al. Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting. Scr Mater, 2015, 96: 25 DOI: 10.1016/j.scriptamat.2014.10.011
    [47]
    Gu D, Yuan P. Thermal evolution behavior and fluid dynamics during laser additive manufacturing of Al-based nanocomposites: Underlying role of reinforcement weight fraction. J Appl Phys, 2015, 118(23): 233
    [48]
    饶项炜, 顾冬冬, 席丽霞. 选区激光熔化成形碳纳米管增强铝基复合材料成形机制及力学性能研究. 机械工程学报, 2019, 55(15): 1 DOI: 10.3901/JME.2019.15.001

    Rao X W, Gu D D, Xi L X. Forming mechanism and mechanical properties of carbon nanotube reinforced aluminum matrix composites by selective laser melting. J Mech Eng, 2019, 55(15): 1 DOI: 10.3901/JME.2019.15.001
    [49]
    柯林达, 薛刚, 朱海红, 等. 激光选区熔化成形SiCP/AlSi10Mg复合材料工艺及性能研究. 上海航天, 2019, 36(2): 118

    Ke L D, Xue G, Zhu H H, et al. Research on fabrication and properties of SiCp/AlSi10Mg composites by selective laser melting. Aerosp Shanghai, 2019, 36(2): 118
    [50]
    卢博, 朱建锋, 方媛, 等. 原位合成SiC对铝基复合材料微观组织和力学性能的影响. 粉末冶金技术, 2020, 38(1): 42

    Lu B, Zhu J F, Fang Y, et al. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis. Powder Metall Technol, 2020, 38(1): 42
    [51]
    Schmidtke K, Palm F, Hawkins A, et al. Process and mechanical properties: Applicability of a scandium modified Al-alloy for laser additive manufacturing. Phys Procedia, 2011, 12(Part A): 369
    [52]
    Schmidtke K, Palm F. Exceptional grain refinement in directly built up Sc-modified AlMg-alloys is promising a quantum leap in ultimate light weight design // 9th International Conference on Trends in Welding Research American Society for Metal. Chicago, 2012.
    [53]
    Zhang H, Zhu H, Nie X, et al. Fabrication and heat treatment of high strength Al‒Cu‒Mg alloy processed using selective laser melting // Spie Lase. San Francisco, 2016.
    [54]
    Wang P, Deng L, Prashanth K G, et al. Microstructure and mechanical properties of Al‒Cu alloys fabricated by selective laser melting of powder mixtures. J Alloys Compd, 2017, 735: 2263
  • Related Articles

    [1]HE Xuemin, WANG Guishan, LI Yinghong, SHI Meijuan. Pitting corrosion behavior of pure copper components in EHV/UHV DC transmission environment[J]. Powder Metallurgy Technology, 2024, 42(1): 91-96. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110003
    [2]Study on microstructure and high-temperature corrosion resistance to melt-salts of LDED High-Cr Ni-base alloy with low melting point[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024100012
    [3]NI Xiaoqing, ZHANG Liang, WU Wenheng, KONG Decheng, WEN Ying, WANG Li, DONG Chaofang. Effect of electrochemical polishing on surface quality and corrosion resistance of Ti6Al4V crowns fabricated by selective laser melting[J]. Powder Metallurgy Technology, 2023, 41(6): 528-535, 542. DOI: 10.19591/j.cnki.cn11-1974/tf.2021110011
    [4]GUO Yang, HU Li-ming. Effect of graphene oxide on the corrosion resistance and electromagnetic propertiese of FeSiAl alloy powders[J]. Powder Metallurgy Technology, 2021, 39(6): 520-525. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030029
    [5]MIAO Zhen-wang, ZHU Fu-wen, LIU Qi. Study on microstructure and corrosion resistance of CoCrFeNiCuTix high-entropy alloy[J]. Powder Metallurgy Technology, 2020, 38(1): 10-17. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.002
    [6]Corrosion Resistance of Ti(C,N)-based Cermet for Surgical Cutting Tools[J]. Powder Metallurgy Technology, 2002, 20(2): 82-85. DOI: 10.3321/j.issn:1001-3784.2002.02.005
    [7]Ye Minghui, Zhao Zhongmin, Du Xinkang, Xin Wentong, Wang Jianjiang. INVESTIGATION ON CORROSION-RESISTANCE OF DOUBLE LINED CERAMIC COMPOSITE PIPES PRODUCED BY GRAVITATIONAL SEPARATION SHS PROCESS[J]. Powder Metallurgy Technology, 2000, 18(2): 106-110.
    [8]Duan Huiping, Wei Yanping, Yin Sheng, Lai Heyi. Investigation on corosion resistance of alloy produced by SHS centrifugal process[J]. Powder Metallurgy Technology, 1998, 16(3): 178-182.
    [9]Huang Jianzhong, Huang Boyun, Lu: Haibo. CHARACTERISTICS AND CORROSION RESISTANT PROPERTY OF HIGH TUNGSTEN HEAVY ALLOY SINTERED AT LOW TEMPERATURE[J]. Powder Metallurgy Technology, 1996, 14(1): 37-43.
    [10]Song Huan, Zhang Song, Zhang Shusheng, Sui Quanming. STUDY ON FLAME SPRAY WELDING BY USING CAST TUNGSTEN CARBIDE ALLOY POWDER PREFORMED COMPACT AND WEAR RESISTANCE[J]. Powder Metallurgy Technology, 1995, 13(4): 259-264.
  • Cited by

    Periodical cited type(1)

    1. 刘杰,李正刚,杨兵. AlCrNbSiTi高熵合金涂层高温水蒸气腐蚀研究. 湖南电力. 2024(02): 29-34 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1635) PDF downloads (192) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return