AdvancedSearch
YANG Shuangjuan, DONG Guixia, GUAN Ruohan, WU Di. Research status and application of BaTiO3-based positive temperature coefficient thermal ceramics[J]. Powder Metallurgy Technology, 2023, 41(2): 167-174, 186. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080010
Citation: YANG Shuangjuan, DONG Guixia, GUAN Ruohan, WU Di. Research status and application of BaTiO3-based positive temperature coefficient thermal ceramics[J]. Powder Metallurgy Technology, 2023, 41(2): 167-174, 186. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080010

Research status and application of BaTiO3-based positive temperature coefficient thermal ceramics

More Information
  • Corresponding author:

    DONG Guixia, E-mail: dgxdgx01@163.com

  • Received Date: August 21, 2021
  • Available Online: March 29, 2023
  • Positive temperature coefficient (PTC) thermal ceramics are a kind of key electronic functional ceramics, which are widely used in heating elements, sensors, circuit protectors, temperature controllers, and electrical demagnetization, because of the excellent characteristics. The positive temperature coefficient thermistor (PTCR) prepared by using BaTiO3 as the host materials is a type of PTC elements with a large amount at present, showing the important research significance. The classification and advantages-disadvantages of the PTC heat-sensitive materials were elaborated in the article, the PTC effect, heat-sensitive mechanism, and semiconductivity principle of the BaTiO3-based PTC materials were introduced, and the research status of the BaTiO3-based PTC heat-sensitive ceramics was summarized at home and abroad. The effects of peak shifting agent, donor doping, acceptor doping, and sintering process on the BaTiO3-based PTC thermal ceramics were analyzed. The application principle and application of the PTC thermal components were summarized in the related fields, and the lead-free PTC thermal ceramics were looked forward.

  • [1]
    吴万范. 室温居里点PTC材料的制备及应用研究[学位论文]. 合肥: 中国科学技术大学, 2013

    Wu W F. Study on Preparation and Application of the PTC Materials with Room Temperature Curie Point [Dissertation]. Hefei: University of Science and Technology of China, 2013
    [2]
    宋嘉梁. 常温PTC热控材料及其热控方法研究[学位论文]. 合肥: 中国科学技术大学, 2016

    Song J L. Study on PTC Thermal Control Material at Room Temperature and Its ThermaI ControI Method [Dissertation]. Hefei: University of Science and Technology of China, 2016
    [3]
    刘宏刚. 高耐压过流保护用PTCR热敏电阻器的研究[学位论文]. 成都: 电子科技大学, 2012

    Liu H G. Study on PTCR Thermistor for High Voltage Overcurrent Protection [Dissertation]. Chengdu: University of Electronic Science and Technology of China, 2012
    [4]
    翟娟, 李兰英, 欧阳义芳. 钙钛矿结构BaTiO3的热物理性能的第一原理研究. 广西民族师范学院学报, 2012, 29(3): 39 DOI: 10.3969/j.issn.1674-8891.2012.03.013

    Zhai J, Li L Y, Ouyang Y F. First-principle study of thermophysical properties of perovskite BaTiO3. J Guangxi Normal Univ Nation, 2012, 29(3): 39 DOI: 10.3969/j.issn.1674-8891.2012.03.013
    [5]
    任伊锦. 钛酸钡系PTC热敏陶瓷材料的制备与性能研究[学位论文]. 太原: 太原理工大学, 2006

    Ren Y J. Study on Preparation and Properties of BaTiO3 PTC Heat Sensitive Ceramics [Dissertation]. Taiyuan: Taiyuan University of Technology, 2006
    [6]
    席保锋, 刘辅宜, 徐传骧, 等. 聚合物/炭黑复合材料PTC特性的理论研究进展. 高分子材料科学与工程, 1999, 15(6): 25 DOI: 10.16865/j.cnki.1000-7555.1999.06.007

    Xi B F, Liu F Y, Xu C X, et al. The advance in theory research of PTC properties of polymer/carbon black composites. Polym Mater Sci Eng, 1999, 15(6): 25 DOI: 10.16865/j.cnki.1000-7555.1999.06.007
    [7]
    徐庆, 陈文, 周静, 等. 掺杂V2O3系PTC陶瓷的研究现状及进展. 现代陶瓷技术, 1997, 18(2): 26

    Xu Q, Chen W, Zhou J, et al. Study and improvement of doped V2O3 PTC ceramics. Adv Ceram, 1997, 18(2): 26
    [8]
    Heywang W. Barium titanate as a semiconductor with blocking layers. Solid State Electron, 1961, 3(1): 51 DOI: 10.1016/0038-1101(61)90080-6
    [9]
    梁云鹤, 王瑾菲, 蒲永平, 等. 含铋BaTiO3基PTC陶瓷半导化研究. 中国陶瓷, 2009, 45(7): 23

    Liang Y H, Wang J F, Pu Y P, et al. Effect of atmosphere sintering on lead-free PTCR ceramics. China Ceram, 2009, 45(7): 23
    [10]
    姜胜林, 龚树萍, 周莉, 等. 双施主掺杂BaTiO3半导体陶瓷材料的研究. 压电与声光, 2000, 22(6): 392 DOI: 10.3969/j.issn.1004-2474.2000.06.013

    Jiang S L, Gong S P, Zhou L, et al. Study on semiconductor ceramic materials: Double donor doping BaTiO3. Piezoelectr Acoust, 2000, 22(6): 392 DOI: 10.3969/j.issn.1004-2474.2000.06.013
    [11]
    李涛, 常方高, 葛永霞, 等. Ho掺杂BaTiO3陶瓷的制备及其正电子湮没研究. 河南师范大学学报(自然科学版), 2006, 34(1): 43

    Li T, Chang F G, Ge Y X, et al. PAT studies of donor-doped BaTiO3 ceramics. J Henan Normal Univ Nat Sci, 2006, 34(1): 43
    [12]
    胡毅, 陈亿裕, 苏卫彦, 等. 低电阻率高居里点PTCR材料的研究. 电子元件与材料, 2006, 6(6): 61 DOI: 10.3969/j.issn.1001-2028.2006.06.020

    Hu Y, Chen Y Y, Su W Y, et al. Study on PTCR material of high Curie point and low resistivity. Electron Compon Mater, 2006, 6(6): 61 DOI: 10.3969/j.issn.1001-2028.2006.06.020
    [13]
    康健宁. 无铅高居里点BaTiO3基PTC材料的研究[学位论文]. 天津: 天津大学, 2010

    Kang J N. Study on the Lead-Free High Curie Temperature BaTiO3 Based Materials [Dissertation]. Tianjin: Tianjin University, 2010
    [14]
    刘明龙. BaTiO3基无铅高居里温度PTCR材料的制备研究[学位论文]. 天津: 天津大学, 2010

    Liu M L. Study on the Preparation of BaTiO3-Based Lead-Free High Curie-Point Positive Temperature Coefficient Ceramics [Dissertation]. Tianjin: Tianjin University, 2010
    [15]
    Mächler D, Töpfer J. Effect of SiO2 sintering additive on the positive temperature coefficient of resistivity (PTCR) behavior of (Bi1/2Na1/2)0.10Ba0.90TiO3+CaO ceramics. Mater Res Bull, 2017, 89: 217 DOI: 10.1016/j.materresbull.2017.02.005
    [16]
    Kola L, Swain A B, Rath M, et al. Impedance characteristics and PTCR effect in lead free BaTi1‒xSnxO3 piezoceramics. Mater Res Bull, 2018, 106: 371 DOI: 10.1016/j.materresbull.2018.06.021
    [17]
    Matsuura K, Hoshina T, Takeda H, et al. Effects of Ca substitution on room temperature resistivity of donor-doped barium titanate based PTCR ceramics. J Ceram Soc Jpn, 2014, 122(1426): 402 DOI: 10.2109/jcersj2.122.402
    [18]
    雷佳. 钛酸钡基PTC陶瓷NTC效应研究[学位论文]. 广州: 华南理工大学, 2018

    Lei J. Study of the NTC Effect in Barium Titanate Based PTC Ceramics [Dissertation]. Guangzhou: South China University of Technology, 2018
    [19]
    郭晨. 施主掺杂和Na0.5Bi0.5TiO3对钛酸钡系PTCR居里温度的影响[学位论文]. 西安: 西安电子科技大学, 2014

    Guo C. Effect of Donor and Na0.5Bi0.5TiO3 (NBT) Dopants on Element’ s Curie Temperature of PTCR [Dissertation]. Xi′an: Xidian University, 2014
    [20]
    Wang X, Liu S J, Zhang L X, et al. Influence of sintering time and donor concentration on the PTCR effect of La-doped BaTiO3-Na0.5Bi0.5TiO3 ceramics. Ceram Int, 2018, 44(Suppl 1): S216
    [21]
    Takeuchi N, Fujishita Y, Kobayashi H. Fabrication of high Curie-point PTCR materials using Gd-doped BaTiO3-(Bi1/2Na1/2)TiO3 system. J Soc Mater Sci Jpn, 2018, 67(4): 474 DOI: 10.2472/jsms.67.474
    [22]
    Cheng X X, Cui H N, Li X X, et al. Investigation of PTCR effect and microdefects in Nb2O5-doped BaTiO3-based ceramics by positron annihilation techniques. Int J Mod Phys B, 2017, 31: 1744060 DOI: 10.1142/S021797921744060X
    [23]
    Teichmann C, Töpfer J. Low-temperature sintering of BaTiO3 positive temperature coefficient of resistivity (PTCR) ceramics. J Mater Sci Mater Electron, 2018, 29: 17881 DOI: 10.1007/s10854-018-9903-5
    [24]
    Mächler D, Schmidt R, Töpfer J, et al. Synthesis, doping and electrical bulk response of (Bi1/2Na1/2)xBa1‒xTiO3+CaO-based ceramics with positive temperature coefficient of resistivity (PTCR). J Alloys Compd, 2018, 762: 209 DOI: 10.1016/j.jallcom.2018.05.049
    [25]
    Zhao J J, Pu Y P, Wu Y R, et al. PTCR behavior of CuO-doped Ba0.96(Bi0. 5K0.5)0.04TiO3 ceramics. Ferroelectrics, 2016, 492(1): 117 DOI: 10.1080/00150193.2015.1071145
    [26]
    Zhao J J, Pu Y P, Wu Y R, et al. Influence of SiO2 addition on the PTCR characteristics of Ba0.92(Bi0.5K0.5)0.08TiO3 ceramics. J Mater Sci Mater Electron, 2015, 26(8): 6051 DOI: 10.1007/s10854-015-3182-1
    [27]
    Liu J Q, Gong S P, Quan L, et al. Effects of SiO2 addition on Ba excessive barium titanate ceramics sintered in reducing atmosphere for laminated PTCR thermistors. Mater Res Innovations, 2014, 18(Suppl 2): 172
    [28]
    Cheng X X, Li X X, Chen X M, et al. Influence of sintering process on electrical properties and PTCR effect of laminated Ba1.005(Ti1‒xNbx)O3 ceramics fired in a reducing atmosphere. Int J Mod Phys B, 2017, 31: 1744061 DOI: 10.1142/S0217979217440611
    [29]
    Cheng X, Zhou D, Fu Q, et al. Influence of the sintering process on the PTCR effect of chip-type Ba1.022–xSmxTiO3 ceramics prepared by the reduction sintering-reoxidation method. J Mater Sci Mater Electron, 2014, 25(2): 1105 DOI: 10.1007/s10854-013-1695-z
    [30]
    张宏亮. 正温度系数热敏材料的制备与研究[学位论文]. 南京: 南京理工大学, 2019

    Zhang H L. Preparation and Research of Positive Temperature Coefficient Thermosensitive Material [Dissertation]. Nanjing: Nanjing University of Science and Technology, 2019
    [31]
    丁士文, 潘彬, 啜艳明, 等. 烧结工艺对BaTiO3基PTC热敏电阻材料性能的影响. 河北大学学报(自然科学版), 2011, 31(5): 486

    Ding S W, Pan B, Chuo Y M, et al. Influence of sintering process on the properties of BaTiO3-based PTCR ceramics. J Hebei Univ Nat Sci, 2011, 31(5): 486
    [32]
    Cheng X, Chen X, Li X, et al. Influence of Ba/Ti ratio on PTCR effect of Bam(Ti1‒xNbx)O3 ceramics prepared by the reduction sintering-reoxidation method. Mod Phy Lett B, 2019, 32: 1840071
    [33]
    Huang H, Chen Y, Li Z, et al. The influences of controlling sintering mechanism on electrical properties of multilayer PTCR chip. J Wuhan Univ Technol Mater Sci, 2015, 30(4): 674 DOI: 10.1007/s11595-015-1210-x
    [34]
    曹明贺, 袁俊, 龚树萍, 等. 降温速率对Ba0.92Ca0.08TiO3 PTCR陶瓷室温电阻率反常现象的影响. 硅酸盐学报, 2003, 31(6): 604 DOI: 10.3321/j.issn:0454-5648.2003.06.016

    Cao M H, Yuan J, Gong S P, et al. The abnormal effect of cooling rate on the room temperature resistivity of Ba0.92Ca0.08TiO3 PTCR ceramics. J Chin Ceram Soc, 2003, 31(6): 604 DOI: 10.3321/j.issn:0454-5648.2003.06.016
  • Related Articles

    [1]WANG Lei, GAO Jinchang, BAO Xiaogang, LIN Wanming, GUO Ruipeng. Effects of mechanical milling on microstructure and tensile properties of CoCrFeMnNi high-entropy alloys produced by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001
    [2]ZHONG Tao, GUO Rongzhen, LIN Xiaochuan, LIU Longting, WANG Jiaxin, XU Zhiqiang, GUO Shibo. Effect of plasma sintering process on the mechanical properties of WC/Cr3C2/La2O3 cutting tool materials[J]. Powder Metallurgy Technology, 2024, 42(6): 582-588. DOI: 10.19591/j.cnki.cn11-1974/tf.2024040013
    [3]LI Yuanyuan, WU Ying, PAN Xiaoqiang, LIU Tingwei. Preparation of boron carbide stainless steel composites by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 381-387. DOI: 10.19591/j.cnki.cn11-1974/tf.2023100003
    [4]WANG Na, WU Zhou, ZHU Qi, XI Sha, ZHANG Xiao, ZHOU Sha, LI Jing, WANG Yuqing. Preparation of Mo–Ni alloys by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 361-366. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030015
    [5]WANG Bin, CHEN Ruizhi, LI Jianfeng, CHEN Pengqi, CHENG Jigui. Preparation of binderless SiCw/WC cemented carbides by spark plasma sintering[J]. Powder Metallurgy Technology, 2023, 41(1): 38-43. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050012
    [6]Fe50Mn30Co10Cr10-xNbC high-entropy alloy composites prepared by SPS technology and characterization of properties[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010004
    [7]YAN Xing-heng, ZHOU Xin-gui, WANG Hong-lei. Research progress of B4C prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2022, 40(6): 516-526. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070001
    [8]WU Xiao-jun. Preparation parameter optimization and mechanical properties of the graphene-reinforced TC11 titanium alloys prepared by spark plasma sintering used for engine[J]. Powder Metallurgy Technology, 2022, 40(4): 291-295. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110010
    [9]SHEN Dan-ni, WANG Chao-ning, GAO Peng, KONG Jian. Ultrafine grained W–Ti alloys prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2021, 39(2): 165-171. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110008
    [10]DENG Lin, JIANG Li-hua. Microstructure and mechanical properties of Ti-21.5Nb alloy prepared by powder sintering used for internal combustion engine[J]. Powder Metallurgy Technology, 2020, 38(3): 201-205. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.006

Catalog

    Article Metrics

    Article views (936) PDF downloads (97) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return