AdvancedSearch
LI Qing, XI Xiao-ying, ZHANG Jian-tao, TANG Hao, LIU Zhong-qiang, XIAO Zhi-yu. Effect of selective laser melting process on phase transition and tensile properties of NiTi shape memory alloys[J]. Powder Metallurgy Technology, 2022, 40(5): 431-440. DOI: 10.19591/j.cnki.cn11-1974/tf.2022010009
Citation: LI Qing, XI Xiao-ying, ZHANG Jian-tao, TANG Hao, LIU Zhong-qiang, XIAO Zhi-yu. Effect of selective laser melting process on phase transition and tensile properties of NiTi shape memory alloys[J]. Powder Metallurgy Technology, 2022, 40(5): 431-440. DOI: 10.19591/j.cnki.cn11-1974/tf.2022010009

Effect of selective laser melting process on phase transition and tensile properties of NiTi shape memory alloys

More Information
  • Corresponding author:

    XIAO Zhi-yu, E-mail: zhyxiao@scut.edu.cn

  • Received Date: March 03, 2022
  • Accepted Date: March 03, 2022
  • Available Online: March 07, 2022
  • TiNi shape memory alloys were prepared by selective laser melting (SLM). The effects of laser energy density on the phase transformation, microstructure, tensile properties, and shape memory properties of the NiTi alloys under the different printing combinations of process parameters were studied. The results show that, when the laser energy density is between 45 J·mm‒3 to 85 J·mm−3, the relative density of the samples is above 99.5%. With the increase of laser energy density, the content of NiTi(B2) phase in the SLM-formed NiTi alloys decreases, and the phase transition temperature increases gradually. Nano Ti2Ni precipitates exist in all the printed samples. With the increase of laser energy density, the precipitates change from the uniform point distribution to the semi-reticular distribution. The SLM-formed samples at the laser energy density of 47.62 J·mm−3 show the best comprehensive performance as the tensile strength of (783±3) MPa, the elongation after fracture of (13.9±0.2)%, the recovery rate of 100%, and the recoverable strain of 2.75% after 20 times of cyclic tensile at room temperature.

  • [1]
    Buehler W J, Gilfrich J V, Wiley R C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys, 1963, 34(5): 1475 DOI: 10.1063/1.1729603
    [2]
    Otsuka K, Ren X B. Recent developments in the research of shape memory alloys. Intermetallics, 1999, 7(5): 511 DOI: 10.1016/S0966-9795(98)00070-3
    [3]
    Moghaddam N S, Skoracki R, Miller M, et al. Three dimensional printing of stiffness-tuned, nitinol skeletal fixation hardware with an example of mandibular segmental defect repair. Procedia CIRP, 2016, 49: 45 DOI: 10.1016/j.procir.2015.07.027
    [4]
    Speirs M, Wang X, Baelen S V, et al. On the transformation behavior of NiTi shape-memory alloy produced by SLM. Shap Mem Superelasticity, 2016, 2: 310 DOI: 10.1007/s40830-016-0083-y
    [5]
    Jani J M, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Mater Des, 2014, 56: 1078 DOI: 10.1016/j.matdes.2013.11.084
    [6]
    Moghaddam N S, Jahadakbar A, Amerinatanzi A, et al. Recent advances in laser-based additive manufacturing // Laser-Based Additive Manufacturing of Metal Parts. Boca Raton, 2017: 1
    [7]
    Elahinia M, Moghaddam N S, Andani M T, et al. Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci, 2016, 83: 630 DOI: 10.1016/j.pmatsci.2016.08.001
    [8]
    Hassan M R, Mehrpouya M, Dawood S. Review of the machining difficulties of nickel-titanium based shape memory alloys. Appl Mech Mater, 2014, 564: 533 DOI: 10.4028/www.scientific.net/AMM.564.533
    [9]
    Elahinia M H, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: a review. Prog Mater Sci, 2012, 57(5): 911 DOI: 10.1016/j.pmatsci.2011.11.001
    [10]
    Wu M H. Fabrication of nitinol materials and components. Mater Sci Forum, 2002, 394-395: 285 DOI: 10.4028/www.scientific.net/MSF.394-395.285
    [11]
    Haberland C, Elahinia M, Walker J M, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing. Smart Mater Struct, 2014, 23(10): 104002 DOI: 10.1088/0964-1726/23/10/104002
    [12]
    Jahadakbar A, Moghaddam N S, Amerinatanzi A, et al. Finite element simulation and additive manufacturing of stiffness-matched NiTi fixation hardware for mandibular reconstruction surgery. Bioengineering, 2016, 3(4): 36 DOI: 10.3390/bioengineering3040036
    [13]
    Amerinatanzi A, Moghaddam N S, Ibrahim H, et al. Evaluating a NiTi implant under realistic loads: a simulation study // Proceedings of the ASME 2016 Smart Materials, Adaptive Structures and Intelligent Systems. Stowe, 2016: 28
    [14]
    Saedi S, Moghaddam N S, Amerinatanzi A, et al. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater, 2018, 144: 552 DOI: 10.1016/j.actamat.2017.10.072
    [15]
    Moghaddam N S, Saghaian S E, Amerinatanzi A, et al. Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting. Mater Sci Eng A, 2018, 724: 220 DOI: 10.1016/j.msea.2018.03.072
    [16]
    Dadbakhsh S, Speirs M, Kruth J P, et al. Influence of SLM on shape memory and compression behaviour of NiTi scaffolds. CIRP Ann, 2015, 64(1): 209 DOI: 10.1016/j.cirp.2015.04.039
    [17]
    Saedi S, Turabi A S, Andani M T, et al. The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting. J Alloys Compd, 2016, 677: 204 DOI: 10.1016/j.jallcom.2016.03.161
    [18]
    Bormann T, Müller B, Schinhammer M, et al. Microstructure of selective laser melted nickel-titanium. Mater Charact, 2014, 94: 189 DOI: 10.1016/j.matchar.2014.05.017
    [19]
    Dadbakhsh S, Vrancken B, Kruth J P, et al. Texture and anisotropy in selective laser melting of NiTi alloy. Mater Sci Eng A, 2016, 650: 225 DOI: 10.1016/j.msea.2015.10.032
    [20]
    Moghaddam N S, Saedi S, Amerinatanzi A, et al. Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment. Sci Rep, 2019, 9(1): 41 DOI: 10.1038/s41598-018-36641-4
    [21]
    Andani M T, Saedi S, Turabi A S, et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting. J Mech Behav Biomed Mater, 2017, 68: 224 DOI: 10.1016/j.jmbbm.2017.01.047
    [22]
    Yang Y, Zhan J B, Li B, et al. Laser beam energy dependence of martensitic transformation in SLM fabricated NiTi shape memory alloy. Materialia, 2019, 6: 100305 DOI: 10.1016/j.mtla.2019.100305
    [23]
    Lu H Z, Yang C, Luo X, et al. Ultrahigh-performance TiNi shape memory alloy by 4D printing. Mater Sci Eng A, 2019, 763: 1381
    [24]
    Lu H Z, Ma H W, Cai W S, et al. Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49. 6 shape memory alloy fabricated via selective laser melting. Acta Mater, 2021, 219: 117261 DOI: 10.1016/j.actamat.2021.117261
    [25]
    Ren D C, Zhang H B, Liu Y J, et al. Microstructure and properties of equiatomic Ti–Ni alloy fabricated by selective laser melting. Mater Sci Eng A, 2020, 771(35): 138586
    [26]
    Bimber Beth A, Hamilton R F, Keist J, et al. Anisotropic microstructure and superelasticity of additive manufactured NiTi alloy bulk builds using laser directed energy deposition. Mater Sci Eng A, 2016, 674: 125 DOI: 10.1016/j.msea.2016.07.059
    [27]
    Bagheri A, Mahtabi M J, Shamsaei N. Fatigue behavior and cyclic deformation of additive manufactured NiTi. J Mater Process Technol, 2018, 252: 440 DOI: 10.1016/j.jmatprotec.2017.10.006
    [28]
    Xiong Z W, Li Z H, Sun Z, et al. Selective laser melting of NiTi alloy with superior tensile property and shape memory effect. J Mater Sci Technol, 2019, 35(10): 2238 DOI: 10.1016/j.jmst.2019.05.015
  • Related Articles

    [1]YUAN Zhenyu, CHANG Cheng, QI Huiying, XIAO Haibo, YAN Xingchen. Effects of micro-TiC particles on microstructure and mechanical properties of selective laser melting Inconel 625 alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 94-101. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070005
    [2]YOU Yuanqi, LI Caiju, YANG Chao, XING Yuan, PENG Yanzhi, YI Jianhong. Effect of ball milling process on microstructure and mechanical properties of CNTs/Al composites[J]. Powder Metallurgy Technology, 2024, 42(4): 331-337, 345. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100003
    [3]LIU Zeng-lin, HAN Wei, WANG Yan-kang, WANG Tao, LÜ Wei-long. Microstructure and mechanical properties of diffusion alloyed steel composites reinforced by ceramic particles[J]. Powder Metallurgy Technology, 2022, 40(6): 527-534. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120007
    [4]ZHANG Su-qing, SU Qian, YU Huan, XIA Jin-huan, MA Bai-chang, ZHUANG Hai-hua, ZHOU Ji-xue. Effect of ultrafine SiC particles on microstructure and property of milled nanocrystalline AZ91 magnesium alloys[J]. Powder Metallurgy Technology, 2021, 39(6): 512-519. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120003
    [5]GU Jing-hong, XIAO Ping-an, XIAO Li-yang, LÜ Rong, GU Si-min, ZHAO Ji-kang. Microstructure and mechanical properties of TiC particle enhanced high chromium iron[J]. Powder Metallurgy Technology, 2021, 39(4): 319-325. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080001
    [6]DONG Di, KANG Ju-lei, XIONG Ning, WANG Cheng-yang. Effects of HfC content on microstructure and mechanical properties of titanium zirconium molybdenum alloys[J]. Powder Metallurgy Technology, 2021, 39(3): 239-244. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030021
    [7]WEI Zi-chen, ZHANG Lin, QIN Ming-li, LI Xing-yu, QUE Zhong-you, QU Xuan-hui. Effect of powder size on microstructure and mechanical properties of rhenium[J]. Powder Metallurgy Technology, 2021, 39(3): 196-202. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030014
    [8]SUN Lu, ZHANG Ji-feng, QIU Tian-xu, SHEN Xiao-ping. Effect of forging temperature on microstructure and mechanical properties of powder hot-forged alloy contained molybdenum[J]. Powder Metallurgy Technology, 2020, 38(3): 174-182. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.002
    [9]HE Qin-qiu, LI Pu-ming, YUAN Yong, ZHANG De-jin, LIU Zeng-lin, LI Song-lin. Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.002
    [10]Tong Guoquan, Wang Erde, He Shaoyuan. THE INFLUENCE OF THE BINDER COMPOSITION ON THE MICROSTRUCTURES AND MECHANICAL PROPERTIES OF WC-20(Fe/Co/Ni) CEMENTED CARBIDES[J]. Powder Metallurgy Technology, 1995, 13(4): 243-248.

Catalog

    Article Metrics

    Article views (2725) PDF downloads (90) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return