AdvancedSearch
LI Qing, XI Xiao-ying, ZHANG Jian-tao, TANG Hao, LIU Zhong-qiang, XIAO Zhi-yu. Effect of selective laser melting process on phase transition and tensile properties of NiTi shape memory alloys[J]. Powder Metallurgy Technology, 2022, 40(5): 431-440. DOI: 10.19591/j.cnki.cn11-1974/tf.2022010009
Citation: LI Qing, XI Xiao-ying, ZHANG Jian-tao, TANG Hao, LIU Zhong-qiang, XIAO Zhi-yu. Effect of selective laser melting process on phase transition and tensile properties of NiTi shape memory alloys[J]. Powder Metallurgy Technology, 2022, 40(5): 431-440. DOI: 10.19591/j.cnki.cn11-1974/tf.2022010009

Effect of selective laser melting process on phase transition and tensile properties of NiTi shape memory alloys

More Information
  • Corresponding author:

    XIAO Zhi-yu, E-mail: zhyxiao@scut.edu.cn

  • Received Date: March 03, 2022
  • Accepted Date: March 03, 2022
  • Available Online: March 07, 2022
  • TiNi shape memory alloys were prepared by selective laser melting (SLM). The effects of laser energy density on the phase transformation, microstructure, tensile properties, and shape memory properties of the NiTi alloys under the different printing combinations of process parameters were studied. The results show that, when the laser energy density is between 45 J·mm‒3 to 85 J·mm−3, the relative density of the samples is above 99.5%. With the increase of laser energy density, the content of NiTi(B2) phase in the SLM-formed NiTi alloys decreases, and the phase transition temperature increases gradually. Nano Ti2Ni precipitates exist in all the printed samples. With the increase of laser energy density, the precipitates change from the uniform point distribution to the semi-reticular distribution. The SLM-formed samples at the laser energy density of 47.62 J·mm−3 show the best comprehensive performance as the tensile strength of (783±3) MPa, the elongation after fracture of (13.9±0.2)%, the recovery rate of 100%, and the recoverable strain of 2.75% after 20 times of cyclic tensile at room temperature.

  • [1]
    Buehler W J, Gilfrich J V, Wiley R C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys, 1963, 34(5): 1475 DOI: 10.1063/1.1729603
    [2]
    Otsuka K, Ren X B. Recent developments in the research of shape memory alloys. Intermetallics, 1999, 7(5): 511 DOI: 10.1016/S0966-9795(98)00070-3
    [3]
    Moghaddam N S, Skoracki R, Miller M, et al. Three dimensional printing of stiffness-tuned, nitinol skeletal fixation hardware with an example of mandibular segmental defect repair. Procedia CIRP, 2016, 49: 45 DOI: 10.1016/j.procir.2015.07.027
    [4]
    Speirs M, Wang X, Baelen S V, et al. On the transformation behavior of NiTi shape-memory alloy produced by SLM. Shap Mem Superelasticity, 2016, 2: 310 DOI: 10.1007/s40830-016-0083-y
    [5]
    Jani J M, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Mater Des, 2014, 56: 1078 DOI: 10.1016/j.matdes.2013.11.084
    [6]
    Moghaddam N S, Jahadakbar A, Amerinatanzi A, et al. Recent advances in laser-based additive manufacturing // Laser-Based Additive Manufacturing of Metal Parts. Boca Raton, 2017: 1
    [7]
    Elahinia M, Moghaddam N S, Andani M T, et al. Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci, 2016, 83: 630 DOI: 10.1016/j.pmatsci.2016.08.001
    [8]
    Hassan M R, Mehrpouya M, Dawood S. Review of the machining difficulties of nickel-titanium based shape memory alloys. Appl Mech Mater, 2014, 564: 533 DOI: 10.4028/www.scientific.net/AMM.564.533
    [9]
    Elahinia M H, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: a review. Prog Mater Sci, 2012, 57(5): 911 DOI: 10.1016/j.pmatsci.2011.11.001
    [10]
    Wu M H. Fabrication of nitinol materials and components. Mater Sci Forum, 2002, 394-395: 285 DOI: 10.4028/www.scientific.net/MSF.394-395.285
    [11]
    Haberland C, Elahinia M, Walker J M, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing. Smart Mater Struct, 2014, 23(10): 104002 DOI: 10.1088/0964-1726/23/10/104002
    [12]
    Jahadakbar A, Moghaddam N S, Amerinatanzi A, et al. Finite element simulation and additive manufacturing of stiffness-matched NiTi fixation hardware for mandibular reconstruction surgery. Bioengineering, 2016, 3(4): 36 DOI: 10.3390/bioengineering3040036
    [13]
    Amerinatanzi A, Moghaddam N S, Ibrahim H, et al. Evaluating a NiTi implant under realistic loads: a simulation study // Proceedings of the ASME 2016 Smart Materials, Adaptive Structures and Intelligent Systems. Stowe, 2016: 28
    [14]
    Saedi S, Moghaddam N S, Amerinatanzi A, et al. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater, 2018, 144: 552 DOI: 10.1016/j.actamat.2017.10.072
    [15]
    Moghaddam N S, Saghaian S E, Amerinatanzi A, et al. Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting. Mater Sci Eng A, 2018, 724: 220 DOI: 10.1016/j.msea.2018.03.072
    [16]
    Dadbakhsh S, Speirs M, Kruth J P, et al. Influence of SLM on shape memory and compression behaviour of NiTi scaffolds. CIRP Ann, 2015, 64(1): 209 DOI: 10.1016/j.cirp.2015.04.039
    [17]
    Saedi S, Turabi A S, Andani M T, et al. The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting. J Alloys Compd, 2016, 677: 204 DOI: 10.1016/j.jallcom.2016.03.161
    [18]
    Bormann T, Müller B, Schinhammer M, et al. Microstructure of selective laser melted nickel-titanium. Mater Charact, 2014, 94: 189 DOI: 10.1016/j.matchar.2014.05.017
    [19]
    Dadbakhsh S, Vrancken B, Kruth J P, et al. Texture and anisotropy in selective laser melting of NiTi alloy. Mater Sci Eng A, 2016, 650: 225 DOI: 10.1016/j.msea.2015.10.032
    [20]
    Moghaddam N S, Saedi S, Amerinatanzi A, et al. Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment. Sci Rep, 2019, 9(1): 41 DOI: 10.1038/s41598-018-36641-4
    [21]
    Andani M T, Saedi S, Turabi A S, et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting. J Mech Behav Biomed Mater, 2017, 68: 224 DOI: 10.1016/j.jmbbm.2017.01.047
    [22]
    Yang Y, Zhan J B, Li B, et al. Laser beam energy dependence of martensitic transformation in SLM fabricated NiTi shape memory alloy. Materialia, 2019, 6: 100305 DOI: 10.1016/j.mtla.2019.100305
    [23]
    Lu H Z, Yang C, Luo X, et al. Ultrahigh-performance TiNi shape memory alloy by 4D printing. Mater Sci Eng A, 2019, 763: 1381
    [24]
    Lu H Z, Ma H W, Cai W S, et al. Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49. 6 shape memory alloy fabricated via selective laser melting. Acta Mater, 2021, 219: 117261 DOI: 10.1016/j.actamat.2021.117261
    [25]
    Ren D C, Zhang H B, Liu Y J, et al. Microstructure and properties of equiatomic Ti–Ni alloy fabricated by selective laser melting. Mater Sci Eng A, 2020, 771(35): 138586
    [26]
    Bimber Beth A, Hamilton R F, Keist J, et al. Anisotropic microstructure and superelasticity of additive manufactured NiTi alloy bulk builds using laser directed energy deposition. Mater Sci Eng A, 2016, 674: 125 DOI: 10.1016/j.msea.2016.07.059
    [27]
    Bagheri A, Mahtabi M J, Shamsaei N. Fatigue behavior and cyclic deformation of additive manufactured NiTi. J Mater Process Technol, 2018, 252: 440 DOI: 10.1016/j.jmatprotec.2017.10.006
    [28]
    Xiong Z W, Li Z H, Sun Z, et al. Selective laser melting of NiTi alloy with superior tensile property and shape memory effect. J Mater Sci Technol, 2019, 35(10): 2238 DOI: 10.1016/j.jmst.2019.05.015
  • Related Articles

    [1]WANG Lei, GAO Jinchang, BAO Xiaogang, LIN Wanming, GUO Ruipeng. Effects of mechanical milling on microstructure and tensile properties of CoCrFeMnNi high-entropy alloys produced by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(6): 645-651. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010001
    [2]ZHONG Tao, GUO Rongzhen, LIN Xiaochuan, LIU Longting, WANG Jiaxin, XU Zhiqiang, GUO Shibo. Effect of plasma sintering process on the mechanical properties of WC/Cr3C2/La2O3 cutting tool materials[J]. Powder Metallurgy Technology, 2024, 42(6): 582-588. DOI: 10.19591/j.cnki.cn11-1974/tf.2024040013
    [3]LI Yuanyuan, WU Ying, PAN Xiaoqiang, LIU Tingwei. Preparation of boron carbide stainless steel composites by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 381-387. DOI: 10.19591/j.cnki.cn11-1974/tf.2023100003
    [4]WANG Na, WU Zhou, ZHU Qi, XI Sha, ZHANG Xiao, ZHOU Sha, LI Jing, WANG Yuqing. Preparation of Mo–Ni alloys by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(4): 361-366. DOI: 10.19591/j.cnki.cn11-1974/tf.2023030015
    [5]WANG Bin, CHEN Ruizhi, LI Jianfeng, CHEN Pengqi, CHENG Jigui. Preparation of binderless SiCw/WC cemented carbides by spark plasma sintering[J]. Powder Metallurgy Technology, 2023, 41(1): 38-43. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050012
    [6]Fe50Mn30Co10Cr10-xNbC high-entropy alloy composites prepared by SPS technology and characterization of properties[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023010004
    [7]YAN Xing-heng, ZHOU Xin-gui, WANG Hong-lei. Research progress of B4C prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2022, 40(6): 516-526. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070001
    [8]WU Xiao-jun. Preparation parameter optimization and mechanical properties of the graphene-reinforced TC11 titanium alloys prepared by spark plasma sintering used for engine[J]. Powder Metallurgy Technology, 2022, 40(4): 291-295. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110010
    [9]SHEN Dan-ni, WANG Chao-ning, GAO Peng, KONG Jian. Ultrafine grained W–Ti alloys prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2021, 39(2): 165-171. DOI: 10.19591/j.cnki.cn11-1974/tf.2019110008
    [10]DENG Lin, JIANG Li-hua. Microstructure and mechanical properties of Ti-21.5Nb alloy prepared by powder sintering used for internal combustion engine[J]. Powder Metallurgy Technology, 2020, 38(3): 201-205. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.006

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return