Citation: | LIU Wen-chao, DENG Cheng, HU Lian-xi, SUN Yu, GAO Fei. Preparation of Al–Si alloy semi-solid billets by liquid phase reaction sintering[J]. Powder Metallurgy Technology, 2022, 40(5): 465-470. DOI: 10.19591/j.cnki.cn11-1974/tf.2022040011 |
The Al–6%Si (mass fraction) semi-solid billets were prepared by liquid phase reaction sintering in this paper, using Al and Si elemental powders. In the results, the mixed Al–6%Si powders have the good cold pressing forming properties, and the relative density can reach 97.6% after 500 MPa cold pressing. The cold pressing characteristics of the mixed powders can be described by Huang Pei-yuan pressing equation. The Al and Si elemental powders can react to form the liquid phase at 585 ℃, which forms a semi-solid microstructure around the equiaxed solid phase Al grains. At the same time, the Al grain size and the liquid phase content of Al increase with the increase of reaction time. The reaction sintering of Al–6%Si elemental powders is a reaction sintering system with the continuous liquid phase, and the microstructure of the semi-solid billet can be controlled by controlling the reaction time.
[1] |
Jung J G, Ahn T Y, Cho Y H, et al. Synergistic effect of ultrasonic melt treatment and fast cooling on the refinement of primary Si in a hypereutectic Al–Si alloy. Acta Mater, 2018, 144: 31 DOI: 10.1016/j.actamat.2017.10.039
|
[2] |
Lasa L, Rodriguez-Ibabe J M. Effect of composition and processing route on the wear behaviour of Al–Si alloys. Scr Mater, 2002, 46(6): 477 DOI: 10.1016/S1359-6462(02)00020-9
|
[3] |
李阳, 李建平, 刘磊, 等. 铸造Al–Si合金表面粗糙度的高温演变机制. 中国有色金属学报, 2021, 31(8): 2115 DOI: 10.11817/j.ysxb.1004.0609.2021-39721
Li Y, Li J P, Liu L, et al. Evolution mechanism of cast Al–Si alloy surface roughness at high temperature. Chin J Nonferrous Met, 2021, 31(8): 2115 DOI: 10.11817/j.ysxb.1004.0609.2021-39721
|
[4] |
Zhao N, Ma H J, Hu Z L, et al. Microstructure and mechanical properties of Al–Mg–Si alloy during solution heat treatment and forging integrated forming process. Mater Charact, 2022, 185: 111762 DOI: 10.1016/j.matchar.2022.111762
|
[5] |
Flemings M C. Behavior of metal alloys in the semisolid state. Metall Trans B, 1991, 22B: 269
|
[6] |
赵利平, 张彦陟, 李云义. A356铝合金热处理工艺中Ti元素分析. 粉末冶金技术, 2020, 38(4): 306 DOI: 10.19591/j.cnki.cn11-1974/tf.2019050004
Zhao L P, Zhang Y Z, Li Y Y. Ti element analysis in heat treatment process of A356 aluminum alloys. Powder Metall Technol, 2020, 38(4): 306 DOI: 10.19591/j.cnki.cn11-1974/tf.2019050004
|
[7] |
Zhao Z D, Chen Q, Wang Y B, et al. Microstructural evolution of an ECAE-formed ZK60-RE magnesium alloy in the semi-solid state. Mater Sci Eng A, 2009, 506: 8 DOI: 10.1016/j.msea.2008.12.042
|
[8] |
Takagi H, Uetani Y, Dohi M, et al. Effects of mechanical stirring and vibration on the microstructure of hypereutectic Al–Si–Cu–Mg alloy billets. Mater Trans, 2007, 48(5): 960 DOI: 10.2320/matertrans.48.960
|
[9] |
Liu D, Atkinson H V, Jones H. Thermodynamic prediction of thixoformability in alloys based on the Al–Si–Cu and Al–Si–Cu–Mg systems. Acta Mater, 2005, 53(14): 3807 DOI: 10.1016/j.actamat.2005.04.028
|
[10] |
Shabestari S G, Abdi M, Naghdali S. Effect of thixoforming and precipitation hardening on microstructure and mechanical properties of Al–10.5Si–3Cu–0. 2Mg alloy produced by strain induced melt activation process. J Mater Res Technol, 2021, 15: 4981
|
[11] |
Bolouri A, Kang C G. Correlation between solid fraction and tensile properties of semisolid RAP processed aluminum alloys. J Alloys Compd, 2012, 516: 192 DOI: 10.1016/j.jallcom.2011.12.045
|
[12] |
Alhawari K S, Omar M Z, Ghazali M J, et al. Microstructural evolution during semisolid processing of Al–Si–Cu alloy with different Mg contents. Trans Nonferrous Met Soc China, 2017, 27(7): 1483 DOI: 10.1016/S1003-6326(17)60169-9
|
[13] |
German R M, Suri P, Park S J. Review: liquid phase sintering. J Mater Sci, 2009, 44: 1 DOI: 10.1007/s10853-008-3008-0
|
[14] |
黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004
Huang P Y. Theory of Power Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004
|
[15] |
Du Y, Schuster J C, Liu Z K, et al. A thermodynamic description of the Al–Fe–Si system over the whole composition and temperature ranges via a hybrid approach of CALPHAD and key experiments. Intermetallics, 2008, 16(4): 554 DOI: 10.1016/j.intermet.2008.01.003
|
1. |
刘杰,李正刚,杨兵. AlCrNbSiTi高熵合金涂层高温水蒸气腐蚀研究. 湖南电力. 2024(02): 29-34 .
![]() |