Citation: | TANG Huiping. Progress of plasma rotating electrode processing technology[J]. Powder Metallurgy Technology, 2023, 41(1): 2-11, 54. DOI: 10.19591/j.cnki.cn11-1974/tf.2022060003 |
Plasma rotating electrode process (PREP) is one of the key technologies for producing high quality spherical metal powders. The liquid film is thrown out to form the droplets by the centrifugal force generated by the high-speed rotation of the electrode, which will atomize and solidify into the spherical powders in an inert atmosphere. The metal powders prepared by PREP have become the important raw materials for additive manufacturing, hot isostatic pressing, surface spraying, and other manufacturing technologies. The history and current status of PREP technology at home and abroad were reviewed in this paper, and the development situation of the PREP equipment and technology in China was summarized. Finally, the development trends and the main scientific issues were pointed out for the further research.
[1] |
杨星波, 朱纪磊, 陈斌科, 等. 等离子旋转电极雾化技术及粉末粒度控制研究现状. 粉末冶金工业, 2022, 32(2): 90 DOI: 10.13228/j.boyuan.issn1006-6543.20210047
Yang X B, Zhu J L, Chen B K, et al. Research status of plasma rotating electrode atomization technology and powder particle size control. Powder Metall Ind, 2022, 32(2): 90 DOI: 10.13228/j.boyuan.issn1006-6543.20210047
|
[2] |
杨洪涛, 卢志辉, 孙志杨, 等. 等离子旋转电极雾化制粉设备国内研究现状. 粉末冶金工业, 2021, 31(4): 88 DOI: 10.13228/j.boyuan.issn1006-6543.20200190
Yang H T, Lu Z H, Sun Z Y, et al. Domestic research status of plasma rotation electrode process equipment. Powder Metall Ind, 2021, 31(4): 88 DOI: 10.13228/j.boyuan.issn1006-6543.20200190
|
[3] |
Demir F, Yurtkuran E, Unal R, et al. 3D Cfd modelling of non-transferred argon plasma torch. Mater Today Proceed, 2020, 32(1): 10
|
[4] |
Kaufmann A R. Production of Pure, Spherical Powders: United State Patent, 3802816. 1974-4-9
|
[5] |
Ozols A, Sirkin H R, Vicente E E. Segregation in stellite powders produced by the plasma rotating electrode process. Mater Sci Eng A, 1999, 262(1-2): 64 DOI: 10.1016/S0921-5093(98)01021-1
|
[6] |
孙念光, 陈斌科, 向长淑, 等. 等离子旋转电极雾化制粉技术现状和创新. 粉末冶金工业, 2020, 30(5): 84 DOI: 10.13228/j.boyuan.issn1006-6543.20190133
Sun N G, Chen B K, Xiang C S, et al. The plasma rotating electrode processing technology current situation and innovation. Powder Metall Ind, 2020, 30(5): 84 DOI: 10.13228/j.boyuan.issn1006-6543.20190133
|
[7] |
张义文, 迟悦. 俄罗斯粉末冶金高温合金研制新进展. 粉末冶金工业, 2012, 22(5): 37 DOI: 10.3969/j.issn.1006-6543.2012.05.009
Zhang Y W, Chi Y. Recent developments of Powders metallurgy superalloy in Russia. Powder Metall Ind, 2012, 22(5): 37 DOI: 10.3969/j.issn.1006-6543.2012.05.009
|
[8] |
张莹. 俄罗斯粉末高温合金涡轮盘的生产工艺. 钢铁研究学报, 2000, 12(3): 63 DOI: 10.3321/j.issn:1001-0963.2000.03.015
Zhang Y. Production technology of powder metallurgy superalloy turbine disk in Russia. J Iron Steel Res, 2000, 12(3): 63 DOI: 10.3321/j.issn:1001-0963.2000.03.015
|
[9] |
张义文, 贾建, 刘建涛, 等. 俄罗斯新型粉末高温合金研究最新进展. 粉末冶金工业, 2020, 30(6): 102 DOI: 10.13228/j.boyuan.issn1006-6543.20200193
Zhang Y W, Jia J, Liu J T, et al. Recent development of new type powder metallurgy superalloys in Russia. Powder Metall Ind, 2020, 30(6): 102 DOI: 10.13228/j.boyuan.issn1006-6543.20200193
|
[10] |
孙兼, 邹金文, 刘培英. 盘件用粉末高温合金的研究与发展. 航空工程与维修, 2001(1): 28
Sun J, Zou J W, Liu P Y. Research and development of powder metallurgy superalloy. Aviat Mainten Eng, 2001(1): 28
|
[11] |
赵风琴, 王长京. 等离子旋转电极制粉设备中的等离子发生器装置的设计与制造. 稀有金属材料与工程, 1988, 17(6): 66 DOI: 10.3321/j.issn:1002-185X.1988.06.012
Zhao F Q, Wang C J. Design and manufacture of plasma generator in plasma rotating electrode pulverizing equipment. Rare Met Mater Eng, 1988, 17(6): 66 DOI: 10.3321/j.issn:1002-185X.1988.06.012
|
[12] |
张义文, 张莹, 陈生大, 等. PREP制取高温合金粉末的特点. 粉末冶金技术, 2001, 19(1): 12 DOI: 10.3321/j.issn:1001-3784.2001.01.003
Zhang Y W, Zhang Y, Chen S D, et al. Characteristics of PREP in preparing superalloy powder. Powder Metall Technol, 2001, 19(1): 12 DOI: 10.3321/j.issn:1001-3784.2001.01.003
|
[13] |
Miller S. Rotating electrode process //ASM Handbook Vol 7. Geauga: ASM International, 1998
|
[14] |
Arkon Ltd. PREP powder production unit for additive manufacturing. [2022-06-09]. https://arkon3d.ru/en/equipment_category/prep-powder-production-unit-for-additive-manufacturing/
|
[15] |
中机新材料研究院. 等离子旋转电极制粉设备. [2022-06-09]. http://campowder.com/index.php/cases_20.html
China Machinery Institute of Advanced Materials. Plasma rotary electrode powder making equipment. [2022-06-09]. http://campowder.com/index.php/cases_20.html
|
[16] |
Cui Y J, Zhao Y F, Numata H, et al. Effects of process parameters and cooling gas on powder formation during the plasma rotating electrode process. Powder Technol, 2021, 393: 301 DOI: 10.1016/j.powtec.2021.07.062
|
[17] |
Cui Y J, Zhao Y F, Numata H, et al. Effects of plasma rotating electrode process parameters on the particle size distribution and microstructure of Ti‒6Al‒4V alloy powder. Powder Technol, 2020, 376: 363 DOI: 10.1016/j.powtec.2020.08.027
|
[18] |
Zhao Y F, Cui Y J, Numata H, et al. Centrifugal granulation behavior in metallic powder fabrication by plasma rotating electrode process. Sci Rep, 2020, 10: 18446 DOI: 10.1038/s41598-020-75503-w
|
[19] |
Kaplanskii Y Y, Zaitsev A A, Sentyurina Z A, et al. The structure and properties of pre-alloyed NiAl‒Cr(Co, Hf) spherical powders produced by plasma rotating electrode processing for additive manufacturing. J Mater Res Technol, 2018, 7(4): 461 DOI: 10.1016/j.jmrt.2018.01.003
|
[20] |
Yamanoglu R, German R, Karagoz S, et al. Microstructural investigation of as cast and PREP atomised Ti–6Al–4V alloy. Powder Metall, 2011, 54(5): 604 DOI: 10.1179/1743290110Y.0000000006
|
[21] |
陶宇, 冯涤, 张义文, 等. 优化等离子旋转电极工艺提高FGH95合金粉末的收得率. 粉末冶金工业, 2003, 13(2): 33 DOI: 10.3969/j.issn.1006-6543.2003.02.007
Tao Y, Feng D, Zhang Y W, et al. Study on improving the yield of FGH95 alloy powder in plasma rotating electrode process. Powder Metall Ind, 2003, 13(2): 33 DOI: 10.3969/j.issn.1006-6543.2003.02.007
|
[22] |
陶宇, 冯涤, 张义文, 等. PREP工艺参数对FGH95高温合金粉末特性的影响. 钢铁研究学报, 2003, 15(5): 46 DOI: 10.3321/j.issn:1001-0963.2003.05.011
Tao Y, Feng D, Zhang Y W, et al. Effect of PREP process parameters on powder properties for FGH95 superalloy. J Iron Steel Res, 2003, 15(5): 46 DOI: 10.3321/j.issn:1001-0963.2003.05.011
|
[23] |
刘建涛, 张义文. 等离子旋转电极雾化工艺制备FGH96合金粉末颗粒的组织. 材料热处理学报, 2012, 33(1): 31 DOI: 10.13289/j.issn.1009-6264.2012.01.002
Liu J T, Zhang Y W. Microstructure of FGH96 superalloy powders atomized plasma rotating electrode process. Trans Mater Heat Treat, 2012, 33(1): 31 DOI: 10.13289/j.issn.1009-6264.2012.01.002
|
[24] |
张莹, 黄虎豹, 刘明东, 等. PREP工艺制取镍基高温合金粉末中的异常颗粒. 稀有金属材料与工程, 2017, 46(11): 3485
Zhang Y, Huang H B, Liu M D, et al. Abnormal particles in Ni-base superalloy powder by PREP process. Rare Met Mater Eng 2017, 46(11): 3485
|
[25] |
胡家齐, 王长军, 魏来, 等. VIGA法与PREP法制备不锈钢粉末的内部孔洞对比研究. 粉末冶金工业, 2021, 31(4): 11 DOI: 10.13228/j.boyuan.issn1006-6543.20190073
Hu J Q, Wang C J, Wei L, et al. A comparative research of porosity in stainless steel powders manufactured by vacuum induction-melting gas atomization and plasma rotating electrode process. Powder Metall Ind, 2021, 31(4): 11 DOI: 10.13228/j.boyuan.issn1006-6543.20190073
|
[26] |
王晨, 赵霄昊, 马逸驰, 等. 超高转速等离子旋转电极工艺制备钬铜球形粉末的研究. 粉末冶金技术, 2020, 38(3): 227 DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.011
Wang C, Zhao X H, Ma Y C, et al. Study of the spherical HoCu powders prepared by supreme-speed plasma rotating electrode process. Powder Metall Technol, 2020, 38(3): 227 DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.011
|
[27] |
王华, 陈蕾蕾, 瞿宗宏. 热处理冷却速率对粉末TC11组织及性能的影响. 中国新技术新产品, 2021(11): 84 DOI: 10.3969/j.issn.1673-9957.2021.11.029
Wang H, Chen L L, Zhai Z H. Effect of heat treatment cooling rate on microstructure and properties of powder TC11. New Technol New Prod China, 2021(11): 84 DOI: 10.3969/j.issn.1673-9957.2021.11.029
|
[28] |
兰剑, 刘立科, 王庆相, 等. 齿科用Co25Cr5W5Mo合金粉末制备及激光选区熔化成形打印件性能分析. 粉末冶金工业, 2021, 31(6): 13 DOI: 10.13228/j.boyuan.issn1006-6543.20200273
Lan J, Liu L K, Wang Q X, et al. Preparation of Co25Cr5W5Mo alloy powder for dentistry and its performance analysis of SLM printed parts. Powder Metall Ind, 2021, 31(6): 13 DOI: 10.13228/j.boyuan.issn1006-6543.20200273
|
[29] |
相敏, 韩志宇, 闫飞, 等. 热等静压对Ti6Al4V粉末冶金件组织和性能的影响. 钛工业进展, 2017, 34(4): 30
Xiang M, Han Z Y, Yan F, et al. Effect of hot isostatic press process on microstructure and properties of PM Ti6Al4V alloy part. Titanium Ind Prog, 2017, 34(4): 30
|
[30] |
康路, 王松, 李鑫, 等. 一种提高镍基金属离心雾化细粉收得率的冶金方法: 中国专利, 201711397083. 2018-05-04
Kang L, Wang S, Li X, et al. Metallurgy Method for Improving Yield of Centrifugal Atomization Fine Powder of Nickel-based Metal: China Patent, 201711397083. 2018-05-04
|
[31] |
刘洋, 韩志宇, 王庆相, 等. 一种制备微细球形金属粉末的设备及方法: 中国专利, 201611174429. 2017-05-17
Liu Y, Han Z Y, Wang Q X, et al. Rotating Electrode Preparing Micro Spherical Metal Powder and Method of Rotating Electrode: China Patent, 201611174429. 2017-05-17
|
[32] |
韩志宇, 梁书锦, 曾光, 等. 一种去除金属粉末中非金属夹杂的装置: 中国专利, 201420231747. 2014-08-27
Han Z Y, Liang S Y, Zeng G, et al. Device for Removing Nonmetallic Inclusions in Metallic Powder: China Patent, 201420231747. 2014-08-27
|
[33] |
赵霄昊, 王晨, 潘霏霏, 等. 球形钛合金粉末制备技术及增材制造应用研究进展. 粉末冶金工业, 2019, 29(6): 71 DOI: 10.13228/j.boyuan.issn1006-6543.20180092
Zhao X H, Wang C, Pan F F, et al. A review on the methods and additive manufacturing application of spherical titanium alloy powder. Powder Metall Ind, 2019, 29(6): 71 DOI: 10.13228/j.boyuan.issn1006-6543.20180092
|
[34] |
Liu Y, Zhao X H, Lai Y J, et al. A brief introduction to the selective laser melting of Ti6Al4V powders by supreme-speed plasma rotating electrode process. Prog Nat Sci Mater Int, 2020, 30(1): 94 DOI: 10.1016/j.pnsc.2019.12.004
|
[35] |
Liu Y, Liang S J, Han Z Y, et al. A novel model of calculating particle sizes in plasma rotating electrode process for superalloys. Powder Technol, 2018, 336: 406 DOI: 10.1016/j.powtec.2018.06.002
|
[36] |
Frost A R. Rotary atomization in the ligament formation mode. J Agric Eng Res, 1981, 26(1): 63 DOI: 10.1016/0021-8634(81)90127-X
|
[37] |
陶珍东, 郑少华. 粉体工程与设备. 北京: 化学工业出版社, 2010
Tao Z D, Zhen S H. Powder Engineering and Equipment. Beijing: Chemical Industry Press, 2010
|
[38] |
Han Z Y, Zhang P X, Lei L M, et al. Morphology and particle analysis of the Ni3Al-based spherical powders manufactured by supreme-speed plasma rotating electrode process. J Mater Res Technol, 2020, 9(6): 13937 DOI: 10.1016/j.jmrt.2020.09.102
|
[39] |
金园园, 贺卫卫, 陈斌科, 等. 球形难熔金属粉末的制备技术. 航空制造技术, 2019, 62(22): 64 DOI: 10.16080/j.issn1671-833x.2019.22.064
Jin Y Y, He W W, Chen B K, et al. Preparation of spherical refractory metal powders. Aeron Manuf Technol, 2019, 62(22): 64 DOI: 10.16080/j.issn1671-833x.2019.22.064
|
[40] |
李晓辉, 陈斌科, 凤治华, 等. 等离子旋转电极雾化制备钨粉及性能表征. 粉末冶金工业, 2022, 32(1): 15 DOI: 10.13228/j.boyuan.issn1006-6543.20210017
Li X H, Chen B K, Feng Z H, et al. Preparation and properties of spherical tungsten powders by plasma rotating electrode process for additive manufacturing. Powder Metall Ind, 2022, 32(1): 15 DOI: 10.13228/j.boyuan.issn1006-6543.20210017
|
[41] |
He W, Liu Y, Tang H, et al. Microstructural characteristics and densification behavior of high-Nb TiAl powder produced by plasma rotating electrode process. Mater Des, 2017, 132: 275 DOI: 10.1016/j.matdes.2017.06.072
|
[42] |
Qiu S, Chen B K, Xiang C S. Preparation and properties of spherical Mo powders by plasma rotating electrode process for additive manufacturing. Mater Sci Forum, 2020, 993: 391 DOI: 10.4028/www.scientific.net/MSF.993.391
|
[43] |
Chen G, Zhao S Y, Tan P, et al. Shape memory TiNi powders produced by plasma rotating electrode process for additive manufacturing. Trans Nonferrous Met Soc China, 2017, 27(12): 2647 DOI: 10.1016/S1003-6326(17)60293-0
|
[44] |
Yin J O, Chen G, Zhao S Y, et al. Microstructural characterization and properties of Ti-28Ta at.% powders produced by plasma rotating electrode process. J Alloys Compd, 2017, 713: 222
|
[45] |
杨鑫, 奚正平, 刘咏, 等. 等离子旋转电极法制备钛铝粉末性能表征. 稀有金属材料与工程, 2010, 39(12): 2251
Yang X, Xi Z P, Liu Y, et al. Characterization of TiAl powders prepared by plasma rotating electrode processing. Rare Met Mater Eng, 2010, 39(12): 2251
|
[46] |
Chen G, Zhao S Y, Tan P, et al. A comparative study of Ti6Al4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technol, 2018, 333: 38 DOI: 10.1016/j.powtec.2018.04.013
|
[47] |
赵少阳, 殷京瓯, 沈垒, 等. PREP法制备Ti‒60Ta合金粉末及其性能. 稀有金属材料与工程, 2017, 46(6): 1679
Zhao S Y, Yin J G, Shen L, et al. Ti‒60Ta powders produced by PREP and their properties. Rare Met Mater Eng, 2017, 46(6): 1679
|
[48] |
Nie Y, Tang J, Teng J, et al. Particle defects and related properties of metallic powders produced by plasma rotating electrode process. Adv Powder Technol, 2020, 31(7): 2912 DOI: 10.1016/j.apt.2020.05.018
|
[49] |
Nie Y, Tang J, Yang B, et al. Comparison in characteristic and atomization behavior of metallic powders produced by plasma rotating electrode process. Adv Powder Technol, 2020, 31(5): 2152 DOI: 10.1016/j.apt.2020.03.006
|
[50] |
Liu W, Duan Y, Ma Y, et al. Surface characterization of plasma rotating electrode atomized 30CrMnSiNi2A steel powder. Appl Surf Sci, 2020, 528: 147004 DOI: 10.1016/j.apsusc.2020.147004
|
[51] |
Tang J, Nie Y, Lei Q, et al. Characteristics and atomization behavior of Ti‒6Al‒4V powder produced by plasma rotating electrode process. Adv Powder Technol, 2019, 30(10): 2330 DOI: 10.1016/j.apt.2019.07.015
|
[52] |
Li Q J, Zhang L, Chen X, et al. Characterization of plasma rotating electrode atomized Nb-Ti based alloy powder. Met Powder Rep, 2020, 75(2): 82 DOI: 10.1016/j.mprp.2019.04.064
|
[53] |
陈焕铭, 胡本芙, 李慧英, 等. 等离子旋转电极雾化FGH95高温合金粉末颗粒凝固组织特征. 金属学报, 2003, 39(1): 30 DOI: 10.3321/j.issn:0412-1961.2003.01.008
Chen H M, Hu B F, Li H Y, et al. Microstructure characteristics of FGH95 superalloy powders prepared by PREP. Acta Metall Sinica, 2003, 39(1): 30 DOI: 10.3321/j.issn:0412-1961.2003.01.008
|
[54] |
陈焕铭, 胡本芙, 余泉茂, 等. 等离子旋转电极雾化熔滴的热量传输与凝固行为. 中国有色金属学报, 2002, 12(5): 883 DOI: 10.3321/j.issn:1004-0609.2002.05.006
Chen H M, Hu B F, Yu Q M, et al. Heat transfer and solidification behavior of droplets during plasma rotating electrode processing. Chin J Nonferrous Met, 2002, 12(5): 883 DOI: 10.3321/j.issn:1004-0609.2002.05.006
|
[55] |
李礼, 戴煜, 吕攀. 等离子旋转电极法制取AlSi10Mg铝合金粉末工艺的研究. 新材料产业, 2018(12): 23 DOI: 10.19599/j.issn.1008-892x.2018.12.006
Li L, Dai Y, Lü P. Study on the technology of producing AlSi10Mg aluminum alloy powder by plasma rotating electrode method. Adv Mater Ind, 2018(12): 23 DOI: 10.19599/j.issn.1008-892x.2018.12.006
|
[56] |
王华, 白瑞敏, 周晓明, 等. PREP法和AA法制取Inconel 718粉末对比分析. 中国新技术新产品, 2019(19): 1 DOI: 10.3969/j.issn.1673-9957.2019.19.002
Wang H, Bai R M, Zhou X M, et al. Comparative analysis of Inconel 718 powder prepared by PREP method and AA method. New Technol New Prod China, 2019(19): 1 DOI: 10.3969/j.issn.1673-9957.2019.19.002
|
[57] |
Hsu T I, Wei C M, Wu L D, et al. Nitinol powders generate from plasma rotation electrode process provide clean powder for biomedical devices used with suitable size, spheroid surface and pure composition. Sci Rep, 2018, 8(1): 13776 DOI: 10.1038/s41598-018-32101-1
|
[1] | YIN Min, WANG Jian. Research progress on equipment and processes of electron beam powder bed fusion additive manufacturing[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070008;https://pmt.ustb.edu.cn |
[2] | LI Yiyang, ZHANG Ruijie, ZHANG Cong, JIANG Xue, WANG Yongwei, LIU Geng, SU Jie. Research progress on oxide formation and control of high-performance steels by additive manufacturing[J]. Powder Metallurgy Technology, 2024, 42(3): 264-274, 296. DOI: 10.19591/j.cnki.cn11-1974/tf.2022060008 |
[3] | ZHAO Shao-yang, TAN Ping, LI Zeng-feng, YIN Jing-ou, SHEN Lei. Study on preparation technology of spherical TiAl alloy powders used for additive manufacturing[J]. Powder Metallurgy Technology, 2022, 40(6): 488-493. DOI: 10.19591/j.cnki.cn11-1974/tf.2022010007 |
[4] | GUO Guang-hao, TANG Chao-lan, CHU Rui-kun. Research on preparation of titanium powders used for metal additive manufacturing[J]. Powder Metallurgy Technology, 2022, 40(4): 340-350. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070006 |
[5] | HOU Wei-qiang, MENG Jie, LIANG Jing-jing, QIU Ke-qiang, REN Ying-lei, LI Jin-guo, WANG Dao-hong, ZHANG Peng, ZHANG Hong-wei, TANG Gang-quan. Preparation technology and research progress of superalloy powders used for additive manufacturing[J]. Powder Metallurgy Technology, 2022, 40(2): 131-138. DOI: 10.19591/j.cnki.cn11-1974/tf.2021030038 |
[6] | A review of powder reuse in powder bed additive manufacturing[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2022070013 |
[7] | SUN Si-heng, SUN Yan, JIA Cun-feng, WANG Hui-jie, FANG Yun-feng, PANG Lei. Study on the explosion sensitivity of metal powders used in additive manufacturing[J]. Powder Metallurgy Technology, 2020, 38(4): 249-256. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010009 |
[8] | WANG Chen, ZHAO Xiao-hao, MA Yi-chi, WANG Qing-xiang, LAI Yun-jin, LIANG Shu-jin. Study of the spherical HoCu powders prepared by supreme-speed plasma rotating electrode process[J]. Powder Metallurgy Technology, 2020, 38(3): 227-233. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.03.011 |
[9] | Zhu Ping, Zhang Lining. POWDER METALLURGY ALUMINIUM ALLOYS[J]. Powder Metallurgy Technology, 1994, 12(1): 50-56. |
[10] | Han Fenglin. M.YU.BALSHIN'S POWDER METALLURGY THEORIES[J]. Powder Metallurgy Technology, 1992, 10(3): 163-177. |
1. |
苏旭文,何志,闫树欣,董龙龙,孙国栋. 纳米ZrC粉末对90W-7Ni-3Fe合金组织及性能影响. 粉末冶金技术. 2025(01): 86-93 .
![]() | |
2. |
刘柏雄,魏民国,赵文敏. 钨粉制备及其对钨合金性能影响的研究进展. 江西冶金. 2024(01): 1-10 .
![]() | |
3. |
陈绍勤,胡玲,雷天涯,王蓉,舒建成,陈梦君. 机械活化强化锌焙砂中锌的浸出. 化工进展. 2023(03): 1649-1658 .
![]() | |
4. |
谢勇才. 球磨工艺对细颗粒钨粉质量及硬质合金晶粒夹粗的影响. 稀有金属与硬质合金. 2023(05): 90-95 .
![]() |