Citation: | SHI Yingnan, SUN Shaobin, QU Jinglong, LIU Mingdong, TIAN Tian, JIA Jian. Effect of quenching transfer time on microstructure and mechanical properties of oil-quenched FGH4095 superalloys[J]. Powder Metallurgy Technology, 2023, 41(5): 457-463. DOI: 10.19591/j.cnki.cn11-1974/tf.2022110004 |
The FGH4095 superalloys prepared by hot isostatic pressing + extrusion + isothermal forging were quenched with the different quenching transfer time, and the microstructure and mechanical properties of the treated superalloys were analyzed. The results show that, the quenching transfer time has little effect on the grain size, primary γ′ phase, and tertiary γ′ phase of the FGH4095 superalloys, but influences the size distribution of the secondary γ′ phase. The average size of the secondary γ′ phase with the quenching transfer time of 30 s is 142.9 nm, and that of the secondary γ′ phase is 161 nm with the quenching transfer time of 40 s. The shorter the quenching transfer time, the faster the quenching cooling rate of the FGH4095 superalloys, and the smaller the average size of the secondary γ′ phase. The yield strength of the FGH4095 superalloys at room temperature with the quenching transfer time of 30 s is better than that of FGH4095 superalloys with quenching transfer time of 40 s, and the tensile strength at room temperature is similar to that of FGH4095 superalloys with quenching transfer time of 40 s. The yield strength, tensile strength, endurance life, and endurance ductility of the FGH4095 alloys with the quenching transfer time of 30 s at 650 ℃ are higher than those of the FGH4095 superalloys with the quenching transfer time of 40 s. The shorter the quenching transfer time, the greater the number of the secondary γ′ phase, the smaller the size, the higher critical shear stress impeding the dislocation movement, the higher the tensile strength and the longer the endurance life of the FGH4095 superalloys.
[1] |
国为民, 赵明汉, 董建新, 等. FGH95镍基粉末高温合金的研究和展望. 机械工程学报, 2013, 49(18): 38 DOI: 10.3901/JME.2013.18.038
Guo W M, Zhao M H, Dong J X, et al. Research and development in FGH95 P/M nickel based superalloy. J Mech Eng, 2013, 49(18): 38 DOI: 10.3901/JME.2013.18.038
|
[2] |
邹金文, 汪武祥. 粉末高温合金研究进展与应用. 航空材料学报, 2006, 26(3): 244
Zou J W, Wang W X. Development and application of P/M superalloy. J Aeron Mater, 2006, 26(3): 244
|
[3] |
许超, 杨治国, 汪武祥, 等. FGH95粉末高温合金低周疲劳性能研究. 燃气涡轮试验与研究, 2003, 16(3): 16
Xu C, Yang Z G, Wang W X, et al. Research on low cycle fatigue properties of P/M superalloy FGH95. Gas Turb Exper Res, 2003, 16(3): 16
|
[4] |
黄国超, 刘国权, 冯敏楠, 等. 固溶热处理工艺对FGH95合金组织和性能的影响. 材料热处理学报, 2017, 38(7): 71
Huang G C, Liu G Q, Feng M N, et al. Effect of solution heat treatment on microstructure and properties of FGH95 alloy. Trans Mater Heat Treat, 2007, 38(7): 71
|
[5] |
谢君, 田素贵, 周晓明, 等. FGH95镍基合金组织结构对持久性能的影响. 中南大学学报(自然科学版), 2012, 43(7): 2547
Xie J, Tian S G, Zhou X M, et al. Influence of microstructure on enduring properties of FGH95 nickel-base superalloy. J Cent South Univ Sci Technol, 2012, 43(7): 2547
|
[6] |
谢君, 田素贵, 周晓明, 等. 热等静压温度对FGH95合金组织和持久性能的影响. 中国有色金属学报, 2011, 21(8): 1834
Xie J, Tian S G, Zhou X M, et al. Effects of hot isostatic pressing temperature on microstructure and stress rupture properties of FGH95 superalloy. Chin J Nonferrous Met, 2011, 21(8): 1834
|
[7] |
王旭青, 张敏聪, 罗俊鹏, 等. 氩气雾化FGH95合金的热模拟实验. 航空材料学报, 2016, 36(6): 9
Wang X Q, Zhang M C, Luo J P, et al. Thermal simulation test of AA-FGH95 superalloy. J Aeron Mater, 2016, 36(6): 9
|
[8] |
罗学军, 王晓峰, 马国君, 等. 热处理对FGH95合金组织和性能的影响研究. 粉末冶金技术, 2012, 30(1): 12
Luo X J, Wang X F, Ma G J, et al. Effect of heat treatment on microstructure and properties of FGH95 alloy. Powder Metall Technol, 2012, 30(1): 12
|
[9] |
国为民, 陈淦生. 直接HIP成形FGH95合金组织和性能研究. 材料科学与工艺, 2000, 8(1): 68
Guo W M, Chen G S. Texture and properties of FGH95 with direct HIP. Mater Sci Technol, 2000, 8(1): 68
|
[10] |
张义文, 刘建涛. 粉末高温合金研究进展. 中国材料进展, 2013, 32(1): 1
Zhang Y W, Liu J T. Development in powder metallurgy superalloy. Mater China, 2013, 32(1): 1
|
[11] |
国为民, 冯涤, 张凤戈, 等. 盘件用FGH95镍基粉末高温合金. 钢铁研究学报, 2002, 14(3): 30
Guo W M, Feng D, Zhang F G, et al. Nickle-base PM superalloy FGH95 for disk. J Iron Steel Res, 2002, 14(3): 30
|
[12] |
王旭青, 盛俊英, 许欣, 等. 热挤压态FGH95合金的动态再结晶机制研究. 失效分析与预防, 2022, 17(5): 293
Wang X Q, Sheng J Y, Xu X, et al. Study on dynamic recrystallization mechanism of hot extruded FGH95 alloy. Fail Analysis Prevent, 2022, 17(5): 293
|
[13] |
汪武祥, 毛健, 呼和, 等. 热等静压FGH95粉末涡轮盘. 材料工程, 1999(12): 39 DOI: 10.3969/j.issn.1001-4381.1999.12.012
Wang W X, Mao J, Hu H, et al. As-HIP FGH95 powder-metallurgy superalloy turbine disks. J Mater Eng, 1999(12): 39 DOI: 10.3969/j.issn.1001-4381.1999.12.012
|
[14] |
刘明东, 张莹, 刘培英, 等. FGH95粉末高温合金原始颗粒边界及其对性能的影响. 粉末冶金工业, 2006, 16(3): 1
Liu M D, Zhang Y, Liu P Y, et al. Study on the PPB defect of P/M superalloy FGH95. Powder Metall Ind, 2006, 16(3): 1
|
[15] |
章守华, 胡本芙, 李慧英, 等. 镍基粉末高温合金FGH95的组织和性能. 北京科技大学学报, 1993, 15(1): 1): 1
Zhang S H, Hu B F, Li H Y, et al. The microstructures and properties of a nickel base superalloy FGH95. J Univ Sci Technol Beijing, 1993, 15(1): 1
|
[16] |
傅豪, 王梦雅, 纪箴, 等. 热变形对FGH96高温合金原始颗粒边界的影响. 粉末冶金技术, 2018, 36(3): 201
Fu H, Wang M Y, Ji Z, et al. Effect of thermal deformation on prior particle boundary of FGH96 superalloy. Powder Metall Technol, 2018, 36(3): 201
|
[17] |
宋晓俊, 王超渊, 汪煜, 等. 挤压态镍基粉末高温合金微观组织分析. 锻压技术, 2020, 45(12): 195
Song X J, Wang C Y, Wang Y, et al. Microstructure analysis on extruded nickel-based powder superalloy. Forg Stamp Technol, 2020, 45(12): 195
|
[18] |
宋晓俊, 王超渊, 汪煜, 等. 挤压参数对镍基粉末冶金高温合金微观组织影响研究. 铸造技术, 2020, 41(11): 1024
Song X J, Wang C Y, Wang Y, et al. Effect of extrusion parameters on microstructure of Ni-based P/M superalloy. Foundry Technol, 2020, 41(11): 1024
|
[19] |
佟健博, 黄利军, 张文强, 等. 淬火转移时间对Ti-1023合金组织与力学性能的影响. 金属热处理, 2020, 45(9): 91
Tong J B, Huang L J, Zhang W Q, et al. Influence of quenching transfer time on microstructure and mechanical properties of Ti-1023 alloy. Heat Treat Met, 2020, 45(9): 91
|
[20] |
吴道祥, 林林, 陈焕良, 等. 淬火转移时间对7050铝合金组织及性能的影响. 铝加工, 2017(5): 11
Wu D X, Lin L, Chen H L, et al. Effect of quenching transfer time on microstructures and mechanical properties of 7050 aluminum alloy. Alum Fabr, 2017(5): 11
|
[21] |
Ardell A J. Precipitation hardening. Metall Trans A, 1985, 16: 2131 DOI: 10.1007/BF02670416
|
[22] |
Feng Y F, Zhou X M, Zou J W, et al. Effect of cooling rate during quenching on the microstructure and creep property of nickel-based superalloy FGH96. Int J Miner Metall Mater, 2019, 26(4): 493 DOI: 10.1007/s12613-019-1756-2
|
[23] |
郑修麟. 材料的力学性能. 西安: 西北工业大学出版社, 2000
Zheng X L. Mechanical Properties of Materials. Xi'an: Northwestern Polytechnical University Press Co. , Ltd. , 2000
|
1. |
刘杰,李正刚,杨兵. AlCrNbSiTi高熵合金涂层高温水蒸气腐蚀研究. 湖南电力. 2024(02): 29-34 .
![]() |