AdvancedSearch
ZHANG Wang-nian, DENG Ning, PENG Li-li. Effect of CaCO3 addition on the properties of CaZrO3[J]. Powder Metallurgy Technology, 2019, 37(1): 46-49, 56. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.008
Citation: ZHANG Wang-nian, DENG Ning, PENG Li-li. Effect of CaCO3 addition on the properties of CaZrO3[J]. Powder Metallurgy Technology, 2019, 37(1): 46-49, 56. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.008

Effect of CaCO3 addition on the properties of CaZrO3

More Information
  • Corresponding author:

    ZHANG Wang-nian, E-mail: zwn2003@126.com

  • Received Date: April 26, 2018
  • Using analytical Ca(OH)2 and m-ZrO2 as the raw materials in the mole ratio of 1:1, the mixtures were added by CaCO3 powders in the different contents by mass, the calcium zirconate (CaZrO3) was synthesized by sintering the compacted samples at 1600 ℃ for 3 h. The effects of CaCO3 powders on sintering properties, phase composition, and microstructures of CaZrO3 were studied by apparent porosity density determinator, X-ray diffraction (XRD), scanning electron microscope (SEM), and X'Pert plus software. The results show that, without the addition of CaCO3, the sharking of CaZrO3 samples is 8.23%, the bulk density and apparent porosity of CaZrO3 sintered at 1600℃ are 3.40 g·cm-3 and 14.5%, respectively, and the grain size of CaZrO3 is only 4.08 μm. With the addition of CaCO3 in mass fraction of 8%, the sharking of CaZrO3 samples is 14.89%, the bulk density and apparent porosity of CaZrO3 sintered at 1600℃ are 4.02 g·cm-3 and 8.6%, respectively, and the grain size of CaZrO3 reaches to 5.45 μm. Thus, it can be seen that the CaCO3 addition in appropriate content can promote the sintering compactness and grain growth of CaZrO3.
  • [1]
    李栋, 李谦, 黄金亮, 等. ZnO-B2O3-SiO2掺杂对锆酸钙基陶瓷性能的影响. 电子元件与材料, 2013, 32(9): 5 DOI: 10.3969/j.issn.1001-2028.2013.09.002

    Li D, Li Q, Huang J L, et al. Effect of ZnO-B2O3-SiO2 glass doping on properties of CaZrO3 microwave dielectric ceramics. Electron Compon Mater, 2013, 32(9): 5 DOI: 10.3969/j.issn.1001-2028.2013.09.002
    [2]
    游杰刚, 张国栋, 金永龙, 等. 烧结方式对合成锆酸钙材料结构和性能的影响. 耐火材料, 2015, 49(2): 110 DOI: 10.3969/j.issn.1001-1935.2015.02.007

    You J G, Zhang G D, Huang J L, et al. Influence of sintering mode on structure and properties of synthetic calcium zirconate, Refractory, 2015, 49(2): 110 DOI: 10.3969/j.issn.1001-1935.2015.02.007
    [3]
    Leen van R, Louis W, Le J, et al. Analysis of the preparation of in-doped CaZrO3 using a peroxo-oxalate complexaion method. J Mater Chem, 2000, 10(11): 2515 DOI: 10.1039/b003840g
    [4]
    陈德平, 刘凤梅. CaZrO3的性质及其在耐火材料中的应用. 矿物岩石地球化学通报, 1999, 18(4): 343 https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH199904036.htm

    Chen D P, Liu F M. The properties of CaZrO3 and its application in refractories. Bull Mineral Petrol Geochem, 1999, 18(4): 343 https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH199904036.htm
    [5]
    凌继栋. 锆酸钙耐火材料简介. 硅酸盐通报, 1986, 5(3): 26 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT198603004.htm

    Ling J D. Introduction of CaZO3 refractories. Bull Chin Ceram Soc, 1986, 5(3): 26 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT198603004.htm
    [6]
    韩金铎, 温兆银, 张敬超, 等. 锆酸钙基高温质子导体材料. 化学进展, 2012, 24(9): 1845 https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201209023.htm

    Hang J Y, Wen Z Y, Zhang J C, et al. CaZrO3 based high temperature proton conductors. Prog Chem, 2012, 24(9): 1845 https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201209023.htm
    [7]
    梁丽萍, 高荫本, 陈诵英. 共沉淀-超临界流体干燥法合成CaO-ZrO2复合氧化物超微粉体及其烧结性能研究(Ⅰ): 粉体的制备及性能表征. 硅酸盐通报, 1998, 17(3): 17) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT803.003.htm

    Liang L P, Gao Y B, Chen Y Y. Preparation of CaO-ZrO2 ultrafine powder by coprecipitation-supercritical fluid drying method and investigation on its sintering behaviour (Ⅰ): preparation and characterization of ultrafine powders. Prog Chem, 1998, 17(3): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT803.003.htm
    [8]
    李玮, 周广军, 张爱玉, 等. 稀土离子掺杂锆酸钙纳米晶的制备及发光性质. 硅酸盐学报, 2011, 39(11): 1729 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201111005.htm

    Li W, Zhou G J, Zhang A Y, et al. Preparation and luminescence properties of rare earth-doped calcium zirconate nanocrystals. Prog Chem, 2011, 39(11): 1729 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201111005.htm
    [9]
    游杰刚, 张国栋, 金永龙, 等. 二氧化硅对锆酸钙材料结构及性能的影响. 人工晶体学报, 2014, 43(5): 1280 DOI: 10.3969/j.issn.1000-985X.2014.05.044

    You J G, Zhang G D, Jin Y L, et al. Effect of SiO2 on structure and properties of CaZO3 material. J Synth Cryst, 2014, 43(5): 1280 DOI: 10.3969/j.issn.1000-985X.2014.05.044
    [10]
    游杰刚, 张国栋, 高配亮, 等. 氧化铝对锆酸钙材料组成和结构的影响. 材料热处理学报, 2014, 35(5): 39 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201405008.htm

    You J G, Zhang G D, Gao P L, et al. Effect of Al2O3 addition on composition and structure of CaZrO3 synthesized from ZrO2 and CaCO3. Trans Mater Heat Treat, 2014, 35(5): 39 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201405008.htm
    [11]
    Gabal M A, Iuhaibi R S A, Angari Y M A. Mn-Zn nano-crystalline ferrites synthesized from spent Zn-C batteries using novel gelatin method. J Hazard Mater, 2013, 246-247: 227 DOI: 10.1016/j.jhazmat.2012.12.026
    [12]
    张汪年. 岩峰白云石合成镁钙砂的研究[学位论文]. 武汉: 武汉科技大学, 2006

    Zhang W N. Study on the Synthesis of Magnesium and Calcium Sand from Dolomite [Dissertation]. Wuhan: Wuhan University of Science and Technology, 2006
    [13]
    张汪年, 邓宁, 梁伟杰, 等. CuO对白云石烧结性能的影响. 粉末冶金技术, 2016, 34(4): 277 DOI: 10.3969/j.issn.1001-3784.2016.04.008

    Zhang W N, Deng N, Liang W J, et al. Effect of CuO on the sintering properties of dolomite. Powder Metall Technol, 2016, 34(4): 277 DOI: 10.3969/j.issn.1001-3784.2016.04.008
    [14]
    张汪年, 邓宁, 王利. CuO对锆酸钙烧结性能影响. 粉末冶金技术, 2018, 36(1): 26 DOI: 10.19591/j.cnki.cn11-1974/tf.2018.01.005

    Zhang W N, Deng N, Wang L. Effects of CuO addition on the properties of CaZrO3. Powder Metall Technol, 2018, 36(1): 26 DOI: 10.19591/j.cnki.cn11-1974/tf.2018.01.005
  • Related Articles

    [1]ZHANG Xiuling, CHEN Yuhong, QI Wubin, ZHANG Qiang, HAI Wanxiu. Densification and physical properties of SiC-diamond polycrystalline materials produced by pressureless sintering[J]. Powder Metallurgy Technology, 2024, 42(2): 165-169, 176. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090009
    [2]WAN Lin, ZHANG Jifeng, SUN Lu, QIU Tianxu, SHEN Xiaoping. Effects of C and Cr contents on microstructure and physical properties of powder forged Fe–Cu–C–Cr alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 508-515. DOI: 10.19591/j.cnki.cn11-1974/tf.2020090001
    [3]ZHANG Chen-zeng, CHEN Cun-guang, LI Pei, LU Tian-xing, YANG Fang, GUO Zhi-meng. Microstructure and properties of Cu‒Fe alloys prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2022, 40(2): 139-144. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040009
    [4]CHEN Jin, XIONG Ning, GE Qi-lu, WANG Tie-jun, CAI Jing, LIU Gui-Rong. Fabrication and properties of large size aluminum-based boron carbide composites by hot isostatic pressing[J]. Powder Metallurgy Technology, 2020, 38(2): 132-137. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.008
    [5]ZHANG Bing-qing, WANG Qi, WANG Sui, WANG Hua-lei, JIANG Feng, SUN Jun. Study on the microstructure and properties of powder-forged gear materials[J]. Powder Metallurgy Technology, 2020, 38(2): 113-120. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.005
    [6]ZHANG Ren, WANG Xu-lei, HE Xin-bo. Effect of Cr coating on microstructure and properties of graphite flake/Cu composites[J]. Powder Metallurgy Technology, 2019, 37(4): 248-254. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.002
    [7]ZHOU Qiang, WEI Shi-chao, YANG Shu-zhong, LUO Li, CHANG De-min. Preparation of FeCuNiSnCo powder by mechanical alloying and the research on physical properties of its matrix material[J]. Powder Metallurgy Technology, 2019, 37(1): 30-35. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.005
    [8]NI Feng, FU Li-hua, DENG Pan, WU Peng-fei. Effects of SiO2-B2O3-Al2O3 scaling powder on microstructures and properties of Cu-C-SnO2 porous materials sintered by powders[J]. Powder Metallurgy Technology, 2018, 36(5): 335-341. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.05.003
    [9]LIU Gui-min, DU Lin-fei, YAN Tao, ZHU Shuo, HUI Yang. Effect of rare earth Ce on the microstructure and properties of Cu-Al2O3 composites[J]. Powder Metallurgy Technology, 2018, 36(3): 196-200, 216. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.006
    [10]Thermophysical Properties of ZrCp/W Composites Prepared by Hot-pressing[J]. Powder Metallurgy Technology, 2002, 20(5): 263-266. DOI: 10.3321/j.issn:1001-3784.2002.05.001
  • Cited by

    Periodical cited type(17)

    1. 蔡锦文,冯可芹,王海波,刘艳芳,陈思潭. 表面修饰石墨烯制备工艺及其在金属材料中的应用研究. 材料导报. 2024(01): 158-163 .
    2. 陈施润,陈文革,钱颖,张辉. 稀土铈改性石墨烯/水性环氧树脂复合涂料涂装技术研究. 中国腐蚀与防护学报. 2024(01): 107-118 .
    3. 张可萌,柳培,王杰,侯博,刘振伟,高岩. Cu-(石墨烯/6063Al)复合材料的设计制备及组织性能研究. 粉末冶金工业. 2024(02): 75-80 .
    4. 冯俊俊,张会,李亚鹏,段瑾瑜,刘禹,蒲卓林. 石墨烯负载铜增强铜基块体复合材料的制备及其性能. 复合材料学报. 2023(01): 485-498 .
    5. 施琴,朱和军. 银包覆过渡族金属硒化物的制备及银基复合材料性能. 粉末冶金技术. 2023(06): 536-542 . 本站查看
    6. 陈华强,陶应啟,李晓静,吴云洪,王吉应,叶墨稼,余贤旺. 化学气相沉积法及机械混合法添加石墨烯对铜铬触头性能的影响. 功能材料. 2023(12): 12148-12153+12162 .
    7. 陈伟光,刘娟. 添加剂对传感器用PCB环氧树脂板真空蒸镀铜层参数优化及结构的影响. 材料保护. 2022(01): 159-164 .
    8. 李慧莹,王玄玉,孙淑宝,刘志龙,董文杰. 镀镍石墨烯制备及红外干扰性能. 含能材料. 2022(12): 1213-1218 .
    9. 文国富,梁艳娟,王秀飞,伊春强,尹彩流,蒙洁丽. 球磨参数对石墨烯增强铜基复合材料性能的影响. 润滑与密封. 2021(01): 103-110 .
    10. 马强,王健,韦琪龙,路承功,魏智强. 碳包覆CdS纳米颗粒的光学性能研究. 粉末冶金技术. 2021(01): 54-61 . 本站查看
    11. 梁燕,王献辉,李航宇,倪菁艺,金千贺. 石墨烯增强铜基复合材料的制备及研究现状. 稀有金属材料与工程. 2021(07): 2607-2619 .
    12. 施琴,朱和军. 银/石墨烯复合润滑添加剂对于润滑油摩擦性能的影响. 粉末冶金技术. 2020(04): 257-261+274 . 本站查看
    13. 赵敬,彭倚天. 石墨烯表面化学镀铜及铜/石墨烯复合材料的性能研究. 电镀与涂饰. 2020(21): 1481-1485 .
    14. 冯孟奇,贾淑果,李韶林,宋克兴,国秀花,张祥峰,林焕然. 铜/碳复合材料的研究进展. 材料热处理学报. 2020(12): 25-36 .
    15. 刘宇宁,彭冬冬,张辉,甘春雷. 烧结压力对石墨烯增强铜基复合材料组织性能的影响. 功能材料. 2019(01): 1183-1187+1191 .
    16. 郭申申,凤仪,赵浩,钱刚,张学斌. 石墨烯增强铜基复合材料的制备及其微观组织与性能研究. 金属功能材料. 2019(04): 16-22 .
    17. 巩正奇,王灿明,崔洪芝,张文娅. 石墨烯对激光熔覆镍基碳化钨涂层组织及性能影响. 粉末冶金技术. 2019(05): 323-331 . 本站查看

    Other cited types(8)

Catalog

    Article Metrics

    Article views (208) PDF downloads (11) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return