AdvancedSearch
YANG Hai-yan, ZHANG Wang-nian, DENG Ning, XU Huan, LIU Yong-hui, SU Rui. Influence of NiO doping on the sintered properties of magnesite[J]. Powder Metallurgy Technology, 2019, 37(4): 279-282, 287. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.007
Citation: YANG Hai-yan, ZHANG Wang-nian, DENG Ning, XU Huan, LIU Yong-hui, SU Rui. Influence of NiO doping on the sintered properties of magnesite[J]. Powder Metallurgy Technology, 2019, 37(4): 279-282, 287. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.007

Influence of NiO doping on the sintered properties of magnesite

More Information
  • Corresponding author:

    ZHANG Wang-nian, E-mail: zwn2003@126.com

  • Received Date: September 24, 2018
  • The magnesite doped by NiO powders in different mass fractions was prepared by high-temperature calcination using natural magnesite as the raw materials in this study. The effects of NiO doping on the sintered properties, phase composition, and microstructures of magnesite were characterized by apparent porosity tester, X-ray diffractometer, and scanning electron microscope. The results show that, the NiO doping can improve the compactness of magnesite and promote the growth of MgO grain. Without the NiO doping, the line rate, bulk density, and apparent porosity of the magnesite after sintering at 1600℃ are 8.72%, 2.96 g·cm-3, and 19.2%, respectively, and the particle size of MgO is 1.36 μm. The line rate, bulk density, and apparent porosity of the magnesite doped by NiO powders in the mass fraction of 0.75% after sintering at 1600℃ are 18.06%, 3.29 g·cm-3, and 11.5%, respectively, and the particle size of MgO reaches to 3.81 μm. The sintered magnesite doped by NiO powders at 1600℃ can lead to the complete solid solution bewteen MgO and NiO, cause the lattice distortion of MgO, reduce the activation energy of grain growth, and consequentially promote the sintering compactness of the magnesite. But, the over-dose NiO doping may result in the partial solid solution bewteen MgO and NiO within a short time, impede the direct contact of sintered phases, obstruct the mass transfer process, and consequentially lower the sintering compactness of the magnesite.
  • [1]
    袁锐. 用菱镁矿粉矿制备高纯镁砂的研究. 中国非金属矿工业导刊, 2003, 36(5): 24 DOI: 10.3969/j.issn.1007-9386.2003.05.007

    Yuan Y. High-purity dead-burned magnesia made from magnesite powder. China Non-met Min Ind Her, 2003, 36(5): 24 DOI: 10.3969/j.issn.1007-9386.2003.05.007
    [2]
    Li Z, Zhang S, Lee W E. Improving the hydration resistance of lime-based refractory materials. Int Mater Rev, 2008, 53(1): 1 DOI: 10.1179/174328007X212508
    [3]
    Chen M, Lu C Y, Yu J K. Improvement in performance of MgO-CaO refractories by addition of nano-sized ZrO2. J Eur Ceram Soc, 2007, 27(16): 4633 http://www.sciencedirect.com/science/article/pii/S0955221907003317
    [4]
    Yeprem H A. Effect of iron oxide addition on the hydration resistance and bulk density of doloma. J Eur Ceram Soc, 2007, 27(2-3): 1651 DOI: 10.1016/j.jeurceramsoc.2006.05.010
    [5]
    李环, 苏莉, 于景坤. 高密度烧结镁砂的研究. 东北大学学报(自然科学版), 2007, 28(3): 381 DOI: 10.3321/j.issn:1005-3026.2007.03.020

    Li H, Su L, Yu J K. Investigation on process flow of high-density magnesia. J Northeastern Univ Nat Sic, 2007, 28(3): 381 DOI: 10.3321/j.issn:1005-3026.2007.03.020
    [6]
    占丹, 黄琳, 肖作安, 等. 流变相-前驱物法制备纳米氧化镁粉体. 化学试剂, 2007, 29(3): 141 DOI: 10.3969/j.issn.0258-3283.2007.03.005

    Zhan D, Huang L, Xiao Z A, et al. Preparation of nanometer magnesium oxide powder by rheology phase-precursor method. Chem Reag, 2007, 29(3): 141 DOI: 10.3969/j.issn.0258-3283.2007.03.005
    [7]
    朱亚先, 曾人杰, 刘新锦, 等. MgO纳米粉制备及表征. 厦门大学学报(自然科学版), 2001, 40(6): 1256 DOI: 10.3321/j.issn:0438-0479.2001.06.015

    Zhu Y X, Zhen R J, Liu X J, et al. Preparation and characterization of MgO nanopowder. J Xiamen Univ Nat Sic, 2001, 40(6): 1256 DOI: 10.3321/j.issn:0438-0479.2001.06.015
    [8]
    桂明玺. 添加氧化镍对提高镁砂的抗水化性能所起的效果. 国外耐火材料, 2005, 30(3): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-GWLH200503010.htm

    Gui M X. Effect of NiO on slaking resistance of magnesia clinker. Foreign Refract, 2005, 30(3): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-GWLH200503010.htm
    [9]
    郑子樵, 李红英. 稀土功能材料. 北京: 化学工业出版社, 2003

    Zheng Z Q, Li H Y. Rare Earth Functional Materials. Beijing: Chemical Industry Press, 2003
    [10]
    刘磊, 王周福, 何俊鹏, 等. Y2O3和CeO2对镁砂烧结性能及显微结构的影响. 耐火材料, 2012, 46(5): 340 https://www.cnki.com.cn/Article/CJFDTOTAL-LOCL201205007.htm

    Liu L, Wang Z F, He J P, et al. Effects of Y2O3 and CeO2 on sintering and microstructure of magnesite. Refractories, 2012, 46(5): 340 https://www.cnki.com.cn/Article/CJFDTOTAL-LOCL201205007.htm
    [11]
    王周福, 徐自伟, 张保国, 等. 混合稀土氧化物对镁质耐火材料结构与性能的影响. 稀有金属材料与工程, 2007, 36(增刊2): 373 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2007S2109.htm

    Wang Z F, Xu Z W, Zhang B G, et al. Effect of mixture of rare earth oxides on microstructure and properties of magnesia refractory. Rare Met Mater Eng, 2007, 36(Suppl 2): 373 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2007S2109.htm
    [12]
    Chaudhuri M, Banerjee G, Kumar A, e al. Secondary phases in natural magnesite sintered with addition of titania, ilmenite and zirconia. J Mater Sci, 1999, 34(23): 5821 DOI: 10.1023/A:1004718503991
    [13]
    Lee Y B, Park H C, Oh K D, et al. Sintering and microstructure development in the system MgO–TiO2. J Mater Sci, 1998, 33(17): 4321 DOI: 10.1023/A%3A1004443728590
    [14]
    Martinac V, Labor M, Petric N. Effect of TiO2, SiO2 and Al2O3 on properties of sintered magnesium oxide from sea water. Mater Chem Phys, 1996, 46(1): 23 http://www.sciencedirect.com/science/article/pii/0254058496801258
    [15]
    张汪年, 王利, 邓宁, 等. CoO对菱镁矿制备镁砂性能的影响. 粉末冶金技术, 2018, 36(4): 292 DOI: 10.19591/j.cnki.cn11-1974/tf.2018.04.009

    Zhang W N, Wang L, Deng N, et al. Effect of CoO addition on the preparation of magnesia by magnesite. Powder Metall Technol, 2018, 36(4): 292 DOI: 10.19591/j.cnki.cn11-1974/tf.2018.04.009
  • Related Articles

    [1]ZHANG Xiuling, CHEN Yuhong, QI Wubin, ZHANG Qiang, HAI Wanxiu. Densification and physical properties of SiC-diamond polycrystalline materials produced by pressureless sintering[J]. Powder Metallurgy Technology, 2024, 42(2): 165-169, 176. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090009
    [2]WAN Lin, ZHANG Jifeng, SUN Lu, QIU Tianxu, SHEN Xiaoping. Effects of C and Cr contents on microstructure and physical properties of powder forged Fe–Cu–C–Cr alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 508-515. DOI: 10.19591/j.cnki.cn11-1974/tf.2020090001
    [3]ZHANG Chen-zeng, CHEN Cun-guang, LI Pei, LU Tian-xing, YANG Fang, GUO Zhi-meng. Microstructure and properties of Cu‒Fe alloys prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2022, 40(2): 139-144. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040009
    [4]CHEN Jin, XIONG Ning, GE Qi-lu, WANG Tie-jun, CAI Jing, LIU Gui-Rong. Fabrication and properties of large size aluminum-based boron carbide composites by hot isostatic pressing[J]. Powder Metallurgy Technology, 2020, 38(2): 132-137. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.008
    [5]ZHANG Bing-qing, WANG Qi, WANG Sui, WANG Hua-lei, JIANG Feng, SUN Jun. Study on the microstructure and properties of powder-forged gear materials[J]. Powder Metallurgy Technology, 2020, 38(2): 113-120. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.005
    [6]ZHANG Ren, WANG Xu-lei, HE Xin-bo. Effect of Cr coating on microstructure and properties of graphite flake/Cu composites[J]. Powder Metallurgy Technology, 2019, 37(4): 248-254. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.04.002
    [7]ZHOU Qiang, WEI Shi-chao, YANG Shu-zhong, LUO Li, CHANG De-min. Preparation of FeCuNiSnCo powder by mechanical alloying and the research on physical properties of its matrix material[J]. Powder Metallurgy Technology, 2019, 37(1): 30-35. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.005
    [8]NI Feng, FU Li-hua, DENG Pan, WU Peng-fei. Effects of SiO2-B2O3-Al2O3 scaling powder on microstructures and properties of Cu-C-SnO2 porous materials sintered by powders[J]. Powder Metallurgy Technology, 2018, 36(5): 335-341. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.05.003
    [9]LIU Gui-min, DU Lin-fei, YAN Tao, ZHU Shuo, HUI Yang. Effect of rare earth Ce on the microstructure and properties of Cu-Al2O3 composites[J]. Powder Metallurgy Technology, 2018, 36(3): 196-200, 216. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.006
    [10]Thermophysical Properties of ZrCp/W Composites Prepared by Hot-pressing[J]. Powder Metallurgy Technology, 2002, 20(5): 263-266. DOI: 10.3321/j.issn:1001-3784.2002.05.001
  • Cited by

    Periodical cited type(17)

    1. 蔡锦文,冯可芹,王海波,刘艳芳,陈思潭. 表面修饰石墨烯制备工艺及其在金属材料中的应用研究. 材料导报. 2024(01): 158-163 .
    2. 陈施润,陈文革,钱颖,张辉. 稀土铈改性石墨烯/水性环氧树脂复合涂料涂装技术研究. 中国腐蚀与防护学报. 2024(01): 107-118 .
    3. 张可萌,柳培,王杰,侯博,刘振伟,高岩. Cu-(石墨烯/6063Al)复合材料的设计制备及组织性能研究. 粉末冶金工业. 2024(02): 75-80 .
    4. 冯俊俊,张会,李亚鹏,段瑾瑜,刘禹,蒲卓林. 石墨烯负载铜增强铜基块体复合材料的制备及其性能. 复合材料学报. 2023(01): 485-498 .
    5. 施琴,朱和军. 银包覆过渡族金属硒化物的制备及银基复合材料性能. 粉末冶金技术. 2023(06): 536-542 . 本站查看
    6. 陈华强,陶应啟,李晓静,吴云洪,王吉应,叶墨稼,余贤旺. 化学气相沉积法及机械混合法添加石墨烯对铜铬触头性能的影响. 功能材料. 2023(12): 12148-12153+12162 .
    7. 陈伟光,刘娟. 添加剂对传感器用PCB环氧树脂板真空蒸镀铜层参数优化及结构的影响. 材料保护. 2022(01): 159-164 .
    8. 李慧莹,王玄玉,孙淑宝,刘志龙,董文杰. 镀镍石墨烯制备及红外干扰性能. 含能材料. 2022(12): 1213-1218 .
    9. 文国富,梁艳娟,王秀飞,伊春强,尹彩流,蒙洁丽. 球磨参数对石墨烯增强铜基复合材料性能的影响. 润滑与密封. 2021(01): 103-110 .
    10. 马强,王健,韦琪龙,路承功,魏智强. 碳包覆CdS纳米颗粒的光学性能研究. 粉末冶金技术. 2021(01): 54-61 . 本站查看
    11. 梁燕,王献辉,李航宇,倪菁艺,金千贺. 石墨烯增强铜基复合材料的制备及研究现状. 稀有金属材料与工程. 2021(07): 2607-2619 .
    12. 施琴,朱和军. 银/石墨烯复合润滑添加剂对于润滑油摩擦性能的影响. 粉末冶金技术. 2020(04): 257-261+274 . 本站查看
    13. 赵敬,彭倚天. 石墨烯表面化学镀铜及铜/石墨烯复合材料的性能研究. 电镀与涂饰. 2020(21): 1481-1485 .
    14. 冯孟奇,贾淑果,李韶林,宋克兴,国秀花,张祥峰,林焕然. 铜/碳复合材料的研究进展. 材料热处理学报. 2020(12): 25-36 .
    15. 刘宇宁,彭冬冬,张辉,甘春雷. 烧结压力对石墨烯增强铜基复合材料组织性能的影响. 功能材料. 2019(01): 1183-1187+1191 .
    16. 郭申申,凤仪,赵浩,钱刚,张学斌. 石墨烯增强铜基复合材料的制备及其微观组织与性能研究. 金属功能材料. 2019(04): 16-22 .
    17. 巩正奇,王灿明,崔洪芝,张文娅. 石墨烯对激光熔覆镍基碳化钨涂层组织及性能影响. 粉末冶金技术. 2019(05): 323-331 . 本站查看

    Other cited types(8)

Catalog

    Article Metrics

    Article views (251) PDF downloads (11) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return